版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市十五縣市2025屆高考全國統(tǒng)考預測密卷數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數,則的虛部為()A. B. C. D.12.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生3.若(),,則()A.0或2 B.0 C.1或2 D.14.設復數滿足,則在復平面內的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤6.若函數的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.7.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.8.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.9.已知函數是定義在R上的奇函數,且滿足,當時,(其中e是自然對數的底數),若,則實數a的值為()A. B.3 C. D.10.在中,,則=()A. B.C. D.11.等差數列中,已知,且,則數列的前項和中最小的是()A.或 B. C. D.12.復數的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.設為橢圓在第一象限上的點,則的最小值為________.14.在的二項展開式中,x的系數為________.(用數值作答)15.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.16.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)定義:若數列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數列”.(1)為“﹣數列”中的任意三項,則使得的取法有多少種?(2)為“﹣數列”中的任意三項,則存在多少正整數對使得且的概率為.18.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)19.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.20.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.21.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數據如下:愿意不愿意男生6020女士4040(1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82822.(10分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先將,化簡轉化為,再得到下結論.【詳解】已知復數,所以,所以的虛部為-1.故選:C【點睛】本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.2、C【解析】
根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.3、A【解析】
利用復數的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數模的運算,屬于基礎題.4、C【解析】
化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數的化簡和對應象限,意在考查學生的計算能力.5、B【解析】
依題意,金箠由粗到細各尺重量構成一個等差數列,則,由此利用等差數列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數列為,設首項,則,公差,.故選B【點睛】本題考查了等差數列的通項公式,考查了推理能力與計算能力,屬于基礎題.6、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數,利用導數研究函數單調性,分析即得解【詳解】函數的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數研究函數的零點,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.7、B【解析】
通過拋物線的定義,轉化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質,直線與拋物線的位置關系,轉化思想的應用,屬于基礎題.8、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數形結合思想易得.9、B【解析】
根據題意,求得函數周期,利用周期性和函數值,即可求得.【詳解】由已知可知,,所以函數是一個以4為周期的周期函數,所以,解得,故選:B.【點睛】本題考查函數周期的求解,涉及對數運算,屬綜合基礎題.10、B【解析】
在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題.11、C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數列前項和中最小的.【詳解】解:等差數列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數列前項和中最小的是.故選:C.【點睛】本題主要考查等差數列的性質,等差數列的通項公式的應用,屬于中檔題.12、C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用橢圓的參數方程,將所求代數式的最值問題轉化為求三角函數最值問題,利用兩角和的正弦公式和三角函數的性質,以及求導數、單調性和極值,即可得到所求最小值.【詳解】解:設點,,其中,,由,,,可設,導數為,由,可得,可得或,由,,可得,即,可得,由可得函數遞減;由,可得函數遞增,可得時,函數取得最小值,且為,則的最小值為1.故答案為:1.【點睛】本題考查橢圓參數方程的應用,利用三角函數的恒等變換和導數法求函數最值的方法,考查化簡變形能力和運算能力,屬于難題.14、-40【解析】
由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數為.故答案為:-40.【點睛】本題考查二項式定理的應用,解題關鍵是靈活掌握二項式展開式通項的公式,屬于基礎題.15、2【解析】
由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.16、【解析】
根據三視圖知該幾何體是三棱柱與半圓錐的組合體,結合圖中數據求出它的體積.【詳解】根據三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結合圖中數據,計算它的體積為.故答案為:.【點睛】本題考查了根據三視圖求簡單組合體的體積應用問題,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數再求和即可.(2)易得“”共有種,“”共有種.再根據古典概型的方法可知,利用組合數的計算公式可得,當時根據題意有,共個;當時求得,再根據換元根據整除的方法求解滿足的正整數對即可.【詳解】解:(1)三個數乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數原理得:為“﹣數列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數列”中任取三項共有種,根據古典概型有:,再根據組合數的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數,可解得,,根據可知,,,,根據可知,,(否則),下設,則由于為正整數知必為正整數,,,化簡上式關系式可以知道:,均為偶數,設,則,由于中必存在偶數,只需中存在數為的倍數即可,,.檢驗:符合題意,共有個,綜上所述:共有個數對符合題意.【點睛】本題主要考查了排列組合的基本方法,同時也考查了組合數的運算以及整數的分析方法等,需要根據題意18、(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】
(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據表格數據填寫列聯表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數為.完善列聯表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【點睛】本小題主要考查根據頻率分布直方圖計算小長方形的高,考查列聯表獨立性檢驗,屬于基礎題.19、(1)證明見解析(2)45°【解析】
(1)設的中點為,連接,設的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點,∴.設的中點為,連接.設的中點為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點.易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點.∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標系,設.則,,,,顯然平面的法向量,設平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進行求解.20、(1).(2).【解析】
(1)先根據空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.21、(1)有99%把握認為愿意參加新生接待工作與性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西職業(yè)技術學院《書籍形態(tài)設計》2023-2024學年第一學期期末試卷
- 陜西郵電職業(yè)技術學院《現代化學與中學化學》2023-2024學年第一學期期末試卷
- 商鋪裝修 出租合同范例
- 行政管理合同范例
- 2024至2030年牛皮紙袋項目投資價值分析報告
- 陜西學前師范學院《孫冶方經濟科學獎與中國經濟發(fā)展》2023-2024學年第一學期期末試卷
- 陜西學前師范學院《基礎護理學實訓技術》2023-2024學年第一學期期末試卷
- 貸款合同提供備案合同范例
- 營銷運營合同范例
- 杭州健身合同范例
- 銷售人員如何調整心態(tài)
- 局部阻力系數計算表
- 中南大學《工程制圖》習題集期末自測題答案解析
- 脂溢性皮炎與頭部脂溢性皮炎攻略
- 丙烯精制工段工藝畢業(yè)設計
- 國開??啤度宋挠⒄Z 2》機考題庫
- 客戶服務技巧-學會委婉說不
- GB/T 2007.3-1987散裝礦產品取樣、制樣通則評定品質波動試驗方法
- GB/T 14456.3-2016綠茶第3部分:中小葉種綠茶
- 《合理利用網絡》設計 省賽一等獎
- GA 1800.5-2021電力系統(tǒng)治安反恐防范要求第5部分:太陽能發(fā)電企業(yè)
評論
0/150
提交評論