廣東省深圳市2009-2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第1頁
廣東省深圳市2009-2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第2頁
廣東省深圳市2009-2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第3頁
廣東省深圳市2009-2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第4頁
廣東省深圳市2009-2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省深圳市2009-2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在上函數(shù)滿足,且對任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.2.關(guān)于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域?yàn)?則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.3.已知,,,則的大小關(guān)系為()A. B. C. D.4.在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種5.正的邊長為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時四面體的外接球表面積為()A. B. C. D.6.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要7.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.8.函數(shù)的圖象大致為A. B. C. D.9.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.10.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.1211.已知為定義在上的奇函數(shù),且滿足當(dāng)時,,則()A. B. C. D.12.已知集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若滿足,且方向相同,則__________.14.若隨機(jī)變量的分布列如表所示,則______,______.-10115.已知數(shù)列為等比數(shù)列,,則_____.16.過動點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.18.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.19.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.20.(12分)如圖,在長方體中,,為的中點(diǎn),為的中點(diǎn),為線段上一點(diǎn),且滿足,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.22.(10分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點(diǎn)睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.2、B【解析】

利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因?yàn)?,所以是的一個周期,①正確;②因?yàn)?,,所以在上不單調(diào)遞增,②錯誤;③因?yàn)?,所以是偶函?shù),又是的一個周期,所以可以只考慮時,的值域.當(dāng)時,,在上單調(diào)遞增,所以,的值域?yàn)椋坼e誤;綜上,正確的個數(shù)只有一個,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.3、A【解析】

根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因?yàn)?,所?因?yàn)?,所以,因?yàn)?,為增函?shù),所以所以,故選:A.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.4、C【解析】

根據(jù)題意,分別計(jì)算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用,涉及分步計(jì)數(shù)原理問題,屬于基礎(chǔ)題.5、D【解析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)?,?由正弦定理可得,故,又因?yàn)?,?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計(jì)算,本題有一定的難度.6、A【解析】

首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪ⅲ士梢酝瞥銮?,若成立,?dāng)時,有,當(dāng)時,有,因?yàn)楹愠闪?,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.7、B【解析】

由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.8、D【解析】

由題可得函數(shù)的定義域?yàn)?,因?yàn)?,所以函?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.9、D【解析】

可過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】

分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當(dāng)過點(diǎn)時,取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.11、C【解析】

由題設(shè)條件,可得函數(shù)的周期是,再結(jié)合函數(shù)是奇函數(shù)的性質(zhì)將轉(zhuǎn)化為函數(shù)值,即可得到結(jié)論.【詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當(dāng)時,,所以,.故選:C.【點(diǎn)睛】本題考查函數(shù)的周期性,由題設(shè)得函數(shù)的周期是解答本題的關(guān)鍵,屬于基礎(chǔ)題.12、C【解析】

求出集合,計(jì)算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由向量平行坐標(biāo)表示計(jì)算.注意驗(yàn)證兩向量方向是否相同.【詳解】∵,∴,解得或,時,滿足題意,時,,方向相反,不合題意,舍去.∴.故答案為:1.【點(diǎn)睛】本題考查向量平行的坐標(biāo)運(yùn)算,解題時要注意驗(yàn)證方向相同這個條件,否則會出錯.14、【解析】

首先求得a的值,然后利用均值的性質(zhì)計(jì)算均值,最后求得的值,由方差的性質(zhì)計(jì)算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計(jì)算性質(zhì)得.【點(diǎn)睛】本題主要考查分布列的性質(zhì),均值的計(jì)算公式,方差的計(jì)算公式,方差的性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.15、81【解析】

設(shè)數(shù)列的公比為,利用等比數(shù)列通項(xiàng)公式求出,代入等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因?yàn)椋傻缺葦?shù)列通項(xiàng)公式可得,,解得,由等比數(shù)列通項(xiàng)公式可得,.故答案為:【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力;屬于基礎(chǔ)題.16、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】

(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)①當(dāng)直線的斜率不存在時,可求得,求得,②當(dāng)直線的斜率存在且不為0時,設(shè)聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項(xiàng)可求得,得出結(jié)論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當(dāng)直線的斜率不存在時,,此時,②當(dāng)直線的斜率存在且不為0時,設(shè),聯(lián)立消元得,設(shè),,直線的斜率為,同理可得,所以,綜合①②,存在常數(shù),使得成等差數(shù)列.【點(diǎn)睛】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長公式的相關(guān)問題,當(dāng)兩直線的斜率具有關(guān)系時,可能通過斜率的代換得出另一條線段的弦長,屬于中檔題.18、(1)見解析;(2)見解析【解析】

(1)對函數(shù)求導(dǎo),對參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時函數(shù)既無極大值,也無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點(diǎn)睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.19、(1);(2)【解析】

(1)由已知條件和正弦定理進(jìn)行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運(yùn)用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點(diǎn)睛】本題考查運(yùn)用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運(yùn)用其公式,合理地選擇進(jìn)行邊角互化,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】

(1)解法一:作的中點(diǎn),連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計(jì)算出二面角的余弦值.【詳解】(1)法一:作的中點(diǎn),連接,.又為的中點(diǎn),∴為的中位線,∴,又為的中點(diǎn),∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論