青海警官職業(yè)學(xué)院《信息分析與預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
青海警官職業(yè)學(xué)院《信息分析與預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
青海警官職業(yè)學(xué)院《信息分析與預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
青海警官職業(yè)學(xué)院《信息分析與預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
青海警官職業(yè)學(xué)院《信息分析與預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁青海警官職業(yè)學(xué)院

《信息分析與預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要從多個(gè)數(shù)據(jù)分析模型中選擇最優(yōu)的一個(gè),以下關(guān)于模型選擇的描述,正確的是:()A.選擇模型參數(shù)最多的那個(gè),因?yàn)樗鼜?fù)雜,性能更好B.根據(jù)訓(xùn)練集上的表現(xiàn)來選擇模型,無需考慮測試集C.綜合考慮模型的復(fù)雜度、準(zhǔn)確性和泛化能力來做出選擇D.只要模型在某個(gè)特定指標(biāo)上表現(xiàn)出色,就選擇該模型2、在進(jìn)行數(shù)據(jù)可視化時(shí),如果數(shù)據(jù)的量級差異較大,為了更清晰地展示數(shù)據(jù)分布,以下哪種處理方式較為合適?()A.使用相同的坐標(biāo)軸刻度B.對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理C.只展示部分?jǐn)?shù)據(jù)D.采用多個(gè)圖表分別展示3、在數(shù)據(jù)分析中,模型的選擇和調(diào)優(yōu)需要根據(jù)數(shù)據(jù)和問題的特點(diǎn)進(jìn)行。假設(shè)我們要解決一個(gè)分類問題。以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.不同的模型在不同的數(shù)據(jù)集上表現(xiàn)可能不同,需要進(jìn)行試驗(yàn)和比較B.可以通過調(diào)整模型的超參數(shù)來優(yōu)化模型的性能C.模型越復(fù)雜,性能就一定越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.可以使用網(wǎng)格搜索、隨機(jī)搜索等方法進(jìn)行超參數(shù)調(diào)優(yōu)4、在數(shù)據(jù)分析中,模型的過擬合和欠擬合是常見的問題。假設(shè)要訓(xùn)練一個(gè)預(yù)測房價(jià)的模型,以下關(guān)于防止過擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化5、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)抽樣可以減少數(shù)據(jù)分析的時(shí)間和成本,同時(shí)保證樣本具有代表性B.隨機(jī)抽樣是一種常用的數(shù)據(jù)抽樣方法,能夠確保每個(gè)數(shù)據(jù)點(diǎn)被選中的概率相等C.分層抽樣可以根據(jù)某些特征將數(shù)據(jù)分為不同層次,然后從各層次中進(jìn)行抽樣D.數(shù)據(jù)抽樣的樣本大小越大,分析結(jié)果就越準(zhǔn)確,因此應(yīng)盡量選擇大樣本6、當(dāng)分析一組時(shí)間序列數(shù)據(jù)時(shí),發(fā)現(xiàn)數(shù)據(jù)存在明顯的季節(jié)性波動(dòng)。為了消除季節(jié)性影響,應(yīng)該采用哪種方法?()A.移動(dòng)平均B.指數(shù)平滑C.季節(jié)指數(shù)法D.線性回歸7、數(shù)據(jù)分析中的分類算法用于將數(shù)據(jù)分為不同的類別。假設(shè)要構(gòu)建一個(gè)分類模型來預(yù)測客戶是否會(huì)流失,以下哪種算法可能對處理不平衡的數(shù)據(jù)集(流失客戶數(shù)量遠(yuǎn)少于未流失客戶)表現(xiàn)較好?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.隨機(jī)森林8、在數(shù)據(jù)分析中,數(shù)據(jù)可視化是重要的環(huán)節(jié)。若要展示不同年齡段人群的收入分布情況,以下哪種圖表最為合適?()A.折線圖B.餅圖C.箱線圖D.柱狀圖9、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)要對數(shù)十億條的用戶行為數(shù)據(jù)進(jìn)行分析,需要快速完成復(fù)雜的計(jì)算任務(wù)。以下哪個(gè)分布式計(jì)算框架在處理這種海量數(shù)據(jù)時(shí)更具優(yōu)勢?()A.HadoopB.SparkC.FlinkD.Storm10、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的監(jiān)控是持續(xù)改進(jìn)數(shù)據(jù)質(zhì)量的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量監(jiān)控的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量監(jiān)控可以通過設(shè)置數(shù)據(jù)質(zhì)量指標(biāo)、定期檢查和預(yù)警等方式來實(shí)現(xiàn)B.數(shù)據(jù)質(zhì)量監(jiān)控應(yīng)覆蓋數(shù)據(jù)的采集、存儲、處理和使用等各個(gè)環(huán)節(jié)C.數(shù)據(jù)質(zhì)量監(jiān)控需要建立有效的反饋機(jī)制,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問題D.數(shù)據(jù)質(zhì)量監(jiān)控只需要在數(shù)據(jù)倉庫中進(jìn)行,其他數(shù)據(jù)源不需要進(jìn)行監(jiān)控11、數(shù)據(jù)分析中的生存分析常用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者接受某種治療后疾病復(fù)發(fā)的時(shí)間,以下哪個(gè)概念是生存分析中的關(guān)鍵指標(biāo)?()A.生存函數(shù)B.風(fēng)險(xiǎn)函數(shù)C.中位生存時(shí)間D.以上都是12、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的比例關(guān)系,以下哪種圖表較為合適?()A.柱狀圖B.餅圖C.折線圖D.箱線圖13、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測未來一段時(shí)間的股票價(jià)格,以下哪種方法可能會(huì)受到數(shù)據(jù)季節(jié)性波動(dòng)的較大影響?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型14、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的應(yīng)用領(lǐng)域非常廣泛。以下關(guān)于數(shù)據(jù)挖掘應(yīng)用領(lǐng)域的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以應(yīng)用于市場營銷、金融、醫(yī)療、電商等多個(gè)領(lǐng)域B.數(shù)據(jù)挖掘可以幫助企業(yè)進(jìn)行客戶細(xì)分、風(fēng)險(xiǎn)評估、產(chǎn)品推薦等工作C.數(shù)據(jù)挖掘的應(yīng)用需要結(jié)合具體的業(yè)務(wù)問題和數(shù)據(jù)特點(diǎn),不能盲目使用D.數(shù)據(jù)挖掘只適用于大規(guī)模企業(yè),對于中小企業(yè)來說沒有實(shí)際應(yīng)用價(jià)值15、關(guān)于數(shù)據(jù)分析中的時(shí)間序列分析,假設(shè)要預(yù)測某股票價(jià)格在未來一段時(shí)間的走勢。時(shí)間序列數(shù)據(jù)具有季節(jié)性、趨勢性和隨機(jī)性等特點(diǎn)。以下哪種方法可能更適合進(jìn)行準(zhǔn)確的預(yù)測?()A.移動(dòng)平均法,平滑數(shù)據(jù)B.指數(shù)平滑法,考慮不同權(quán)重C.ARIMA模型,結(jié)合自回歸和移動(dòng)平均D.不進(jìn)行預(yù)測,隨機(jī)猜測股票價(jià)格16、假設(shè)要分析一個(gè)零售企業(yè)的庫存數(shù)據(jù),包括商品種類、庫存數(shù)量、銷售速度等,以制定合理的補(bǔ)貨策略。以下哪個(gè)因素可能對庫存管理的效率產(chǎn)生最大影響?()A.商品的銷售預(yù)測準(zhǔn)確性B.供應(yīng)商的交貨時(shí)間C.庫存成本D.以上都是17、數(shù)據(jù)分析中的聚類分析用于將數(shù)據(jù)分為不同的組或簇。假設(shè)要對一組學(xué)生的學(xué)習(xí)成績數(shù)據(jù)進(jìn)行聚類,以發(fā)現(xiàn)不同學(xué)習(xí)水平的群體。如果聚類結(jié)果中存在一個(gè)簇的規(guī)模遠(yuǎn)大于其他簇,可能意味著什么?()A.數(shù)據(jù)分布不均衡,需要重新聚類B.大部分學(xué)生的學(xué)習(xí)水平相似C.聚類算法選擇不當(dāng)D.這種情況是正常的,無需進(jìn)一步處理18、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢B.通過數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來更美觀,對于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果19、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而不僅僅是相關(guān)性。假設(shè)我們想要研究某種藥物是否真正導(dǎo)致了病情的改善,以下哪種方法或設(shè)計(jì)可以幫助我們進(jìn)行因果推斷?()A.隨機(jī)對照試驗(yàn)B.觀察性研究中的工具變量法C.斷點(diǎn)回歸設(shè)計(jì)D.以上都是20、對于一個(gè)具有大量數(shù)據(jù)的數(shù)據(jù)庫,若要提高查詢效率,以下哪種技術(shù)可能會(huì)被使用?()A.緩存B.分區(qū)C.索引優(yōu)化D.以上都是21、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來自不同數(shù)據(jù)庫的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問題B.可以使用ETL(Extract,Transform,Load)工具來實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過程中可能會(huì)引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性22、對于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過去十年間的經(jīng)濟(jì)增長趨勢。數(shù)據(jù)涵蓋多個(gè)指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個(gè)地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線圖,呈現(xiàn)每個(gè)地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線圖,反映數(shù)據(jù)的分布情況23、在數(shù)據(jù)分析中,若要研究多個(gè)變量之間的非線性關(guān)系,以下哪種方法可能會(huì)被采用?()A.多項(xiàng)式回歸B.嶺回歸C.套索回歸D.以上都有可能24、在數(shù)據(jù)分析中的分類算法評估指標(biāo)中,以下關(guān)于準(zhǔn)確率和召回率的說法,不正確的是()A.準(zhǔn)確率是指分類正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類的正例樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.在某些情況下,準(zhǔn)確率和召回率可能存在矛盾,需要根據(jù)具體問題權(quán)衡二者的重要性D.為了綜合評估分類算法的性能,只需要關(guān)注準(zhǔn)確率和召回率其中一個(gè)指標(biāo)即可,另一個(gè)可以忽略25、數(shù)據(jù)分析中的推薦系統(tǒng)廣泛應(yīng)用于電商、娛樂等領(lǐng)域。假設(shè)要為一個(gè)在線音樂平臺構(gòu)建推薦系統(tǒng),根據(jù)用戶的歷史播放記錄和偏好為其推薦歌曲。以下哪種推薦算法在處理這種音樂推薦場景時(shí)更能滿足用戶的個(gè)性化需求?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.基于知識的推薦D.混合推薦二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋什么是可解釋性人工智能在數(shù)據(jù)分析中的重要性,列舉提高模型可解釋性的方法和技術(shù),并舉例分析。2、(本題5分)闡述數(shù)據(jù)分析中的特征選擇中的Wrapper方法和Filter方法的區(qū)別和適用場景,并舉例說明在實(shí)際項(xiàng)目中的應(yīng)用。3、(本題5分)解釋生存分析的概念和應(yīng)用場景,說明其主要的分析方法和指標(biāo),如生存函數(shù)、風(fēng)險(xiǎn)函數(shù)等。4、(本題5分)描述數(shù)據(jù)可視化中的地圖可視化技術(shù),如choropleth地圖、heatmap地圖等的特點(diǎn)和適用場景,并舉例說明在地理數(shù)據(jù)分析中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某物流企業(yè)掌握了不同運(yùn)輸方式的成本數(shù)據(jù)、運(yùn)輸時(shí)效、貨物損壞率等。探討怎樣利用這些數(shù)據(jù)選擇最優(yōu)的運(yùn)輸方式和優(yōu)化物流方案。2、(本題5分)一家快遞公司的農(nóng)村物流業(yè)務(wù)記錄了配送數(shù)據(jù),包括貨物類型、配送距離、配送難度、費(fèi)用等。研究貨物類型和配送距離對配送難度和費(fèi)用的影響。3、(本題5分)某在線攝影服務(wù)平臺積累了用戶需求數(shù)據(jù)、攝影師作品風(fēng)格、訂單完成情況等。提高攝影師與用戶的匹配度,提升服務(wù)質(zhì)量。4、(本題5分)一家健身中心的團(tuán)體課程記錄了會(huì)員數(shù)據(jù),包括課程類型、教練風(fēng)格、會(huì)員參與度、續(xù)課意愿等。探討課程類型和教練風(fēng)格對會(huì)員參與度和續(xù)課意愿的影響。5、(本題5分)某電商平臺的辦公用品類目存有銷售數(shù)據(jù),包括品牌、產(chǎn)品類別、價(jià)格、銷量、企業(yè)用戶規(guī)模等。分析不同企業(yè)用戶規(guī)模對辦公用品品牌和類別的采購偏好及價(jià)格敏感度。四、論述題(本大題共3個(gè)小題,共3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論