版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆貴州省畢節(jié)市赫章縣高考沖刺模擬數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),滿足對(duì)任意的實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知函數(shù),,若成立,則的最小值是()A. B. C. D.3.己知,,,則()A. B. C. D.4.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.5.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.36.在中,為邊上的中點(diǎn),且,則()A. B. C. D.7.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.8.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.9.已知正方體的棱長(zhǎng)為2,點(diǎn)在線段上,且,平面經(jīng)過(guò)點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.10.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.12011.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長(zhǎng)、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.12.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說(shuō)“是乙或丙獲獎(jiǎng).”乙說(shuō):“甲、丙都未獲獎(jiǎng).”丙說(shuō):“我獲獎(jiǎng)了”.丁說(shuō):“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是__________.14.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.15.在平面直角坐標(biāo)系中,雙曲線的一條準(zhǔn)線與兩條漸近線所圍成的三角形的面積為______.16.已知不等式的解集不是空集,則實(shí)數(shù)的取值范圍是;若不等式對(duì)任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是___三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來(lái)的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來(lái)的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵(lì)工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級(jí)優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級(jí)一樣,則兩方都不得分,當(dāng)一方總分為4分時(shí),比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時(shí),最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.18.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.19.(12分)已知中心在原點(diǎn)的橢圓的左焦點(diǎn)為,與軸正半軸交點(diǎn)為,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作斜率為、的兩條直線分別交于異于點(diǎn)的兩點(diǎn)、.證明:當(dāng)時(shí),直線過(guò)定點(diǎn).20.(12分)已知,.(1)解;(2)若,證明:.21.(12分)某芯片公司對(duì)今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測(cè)評(píng),該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測(cè)試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測(cè)。若3個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評(píng)分沒達(dá)到11萬(wàn)分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評(píng)分沒有達(dá)到11萬(wàn)分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測(cè),二測(cè)時(shí),2個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評(píng)分沒達(dá)到11萬(wàn)分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測(cè)試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測(cè)試,現(xiàn)手機(jī)公司測(cè)試部門預(yù)算的測(cè)試經(jīng)費(fèi)為10萬(wàn)元,試問預(yù)算經(jīng)費(fèi)是否足夠測(cè)試完這100顆芯片?請(qǐng)說(shuō)明理由.22.(10分)己知的內(nèi)角的對(duì)邊分別為.設(shè)(1)求的值;(2)若,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實(shí)數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實(shí)數(shù)的取值范圍是.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時(shí)還要考慮分段點(diǎn)處函數(shù)值的大小關(guān)系,考查運(yùn)算求解能力,屬于中等題.2、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問題,通過(guò)構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過(guò)二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).3、B【解析】
先將三個(gè)數(shù)通過(guò)指數(shù),對(duì)數(shù)運(yùn)算變形,再判斷.【詳解】因?yàn)?,,所以,故選:B.【點(diǎn)睛】本題主要考查指數(shù)、對(duì)數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.4、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.5、C【解析】
否命題與逆命題是等價(jià)命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識(shí)進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過(guò)邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.6、A【解析】
由為邊上的中點(diǎn),表示出,然后用向量模的計(jì)算公式求模.【詳解】解:為邊上的中點(diǎn),,故選:A【點(diǎn)睛】在三角形中,考查中點(diǎn)向量公式和向量模的求法,是基礎(chǔ)題.7、A【解析】
根據(jù)圖象關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱圖象關(guān)于對(duì)稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過(guò)奇偶性和對(duì)稱性得到函數(shù)的單調(diào)性,通過(guò)自變量的大小關(guān)系求得結(jié)果.8、B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.9、B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫?,所以,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)椋?,即所以由余弦定理得:所以所以四邊形故選:B【點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.10、A【解析】
對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。11、B【解析】
根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長(zhǎng)方體,于是得到三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長(zhǎng)方體的四個(gè)頂點(diǎn),即為三棱錐,且長(zhǎng)方體的長(zhǎng)、寬、高分別為,∴此三棱錐的外接球即為長(zhǎng)方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長(zhǎng)方體的外接球的直徑即為長(zhǎng)方體的體對(duì)角線,對(duì)于一些比較特殊的三棱錐,在研究其外接球的問題時(shí)可考慮通過(guò)構(gòu)造長(zhǎng)方體,通過(guò)長(zhǎng)方體的外球球來(lái)研究三棱錐的外接球的問題.12、D【解析】
由題可知,可轉(zhuǎn)化為曲線與有兩個(gè)公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在上,即曲線與有兩個(gè)公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí)取得極大值,也即為最大值,當(dāng)時(shí),;當(dāng)時(shí),,所以滿足條件.故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、丙【解析】若甲獲獎(jiǎng),則甲、乙、丙、丁說(shuō)的都是錯(cuò)的,同理可推知乙、丙、丁獲獎(jiǎng)的情況,可知獲獎(jiǎng)的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.14、【解析】
先求得復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式即得.【詳解】,,則.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算和求復(fù)數(shù)的模,是基礎(chǔ)題.15、【解析】
求出雙曲線的漸近線方程,求出準(zhǔn)線方程,求出三角形的頂點(diǎn)的坐標(biāo),然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準(zhǔn)線方程為,雙曲線的漸近線方程為:,可得準(zhǔn)線方程與雙曲線的兩條漸近線所圍成的三角形的頂點(diǎn)的坐標(biāo),,,,則三角形的面積為.故答案為:【點(diǎn)睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中檔題.16、【解析】
利用絕對(duì)值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡(jiǎn)不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡(jiǎn)不等式有,即而當(dāng)時(shí)滿足題意,解得或所以答案為【點(diǎn)睛】本題主要考查的是函數(shù)恒成立的問題和絕對(duì)值不等式,要注意到絕對(duì)值的幾何意義,數(shù)形結(jié)合來(lái)解答本題,注意去絕對(duì)值時(shí)的分類討論化簡(jiǎn)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)乙的技術(shù)更好,見解析(2)①,;②【解析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設(shè)每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產(chǎn)一件零件給工廠帶來(lái)的效益分別為元、元,隨機(jī)變量,的分布列分別為10521052所以,,所以,即乙的技術(shù)更好(2)①表示的是甲得分時(shí),甲最終獲勝的概率,所以,表示的是甲得4分時(shí),甲最終獲勝的概率,所以;②設(shè)每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時(shí),最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列和期望,考查數(shù)列遞推關(guān)系的應(yīng)用,是一道難度較大的題目.18、(1)證明見解析(2)【解析】
(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1);(2)見解析.【解析】
(1)在中,計(jì)算出的值,可得出的值,進(jìn)而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,設(shè)直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,根據(jù)已知條件得出,利用韋達(dá)定理和斜率公式化簡(jiǎn)得出與所滿足的關(guān)系式,代入直線的方程,即可得出直線所過(guò)定點(diǎn)的坐標(biāo).【詳解】(1)在中,,,,,,,,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)由題不妨設(shè),設(shè)點(diǎn),聯(lián)立,消去化簡(jiǎn)得,且,,,,,∴代入,化簡(jiǎn)得,化簡(jiǎn)得,,,,直線,因此,直線過(guò)定點(diǎn).【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中直線過(guò)定點(diǎn)的問題,考查計(jì)算能力,屬于中等
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF(陜) 082-2022 積分球光色綜合測(cè)試系統(tǒng)校準(zhǔn)規(guī)范
- 跨界合作助力品牌發(fā)展計(jì)劃
- 社會(huì)治理背景下保安工作的創(chuàng)新實(shí)踐計(jì)劃
- 社交媒體的職業(yè)生涯路徑計(jì)劃
- 年度工作計(jì)劃的可視化呈現(xiàn)方式
- 社區(qū)服務(wù)與社會(huì)責(zé)任教育計(jì)劃
- 衛(wèi)浴柜類相關(guān)行業(yè)投資方案
- TFT-LCD用偏光片相關(guān)項(xiàng)目投資計(jì)劃書
- 雨水收集利用實(shí)施方案計(jì)劃
- 貨運(yùn)保險(xiǎn)合同三篇
- 2024新蘇教版一年級(jí)數(shù)學(xué)冊(cè)第五單元第1課《認(rèn)識(shí)11~19》課件
- 《Photoshop CC圖形圖像處理實(shí)例教程》全套教學(xué)課件
- 2024-2030年中國(guó)永磁耦合器行業(yè)經(jīng)營(yíng)優(yōu)勢(shì)及競(jìng)爭(zhēng)對(duì)手現(xiàn)狀調(diào)研報(bào)告
- 福建省泉州市安溪縣實(shí)驗(yàn)小學(xué)2023-2024學(xué)年三年級(jí)上學(xué)期素養(yǎng)比賽語(yǔ)文試卷
- 小學(xué)科學(xué)教科版五年級(jí)上冊(cè)全冊(cè)易錯(cuò)知識(shí)點(diǎn)專項(xiàng)練習(xí)(判斷選擇-分單元編排-附參考答案和點(diǎn)撥)
- NB-T47003.1-2009鋼制焊接常壓容器(同JB-T4735.1-2009)
- 法律邏輯簡(jiǎn)單學(xué)(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年曲阜師范大學(xué)
- 惠州市惠城區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷
- 北京市西城區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末英語(yǔ)試題【帶答案】
- ISO45001-2018職業(yè)健康安全管理體系之5-4:“5 領(lǐng)導(dǎo)作用和工作人員參與-5.4 工作人員的協(xié)商和參與”解讀和應(yīng)用指導(dǎo)材料(2024A0-雷澤佳)
- 小學(xué)二年級(jí)上冊(cè)數(shù)學(xué)-數(shù)角的個(gè)數(shù)專項(xiàng)練習(xí)
評(píng)論
0/150
提交評(píng)論