江蘇揚(yáng)州中學(xué)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
江蘇揚(yáng)州中學(xué)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
江蘇揚(yáng)州中學(xué)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
江蘇揚(yáng)州中學(xué)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
江蘇揚(yáng)州中學(xué)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇揚(yáng)州中學(xué)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.年某省將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.2.“紋樣”是中國(guó)藝術(shù)寶庫(kù)的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲200個(gè)點(diǎn),己知恰有80個(gè)點(diǎn)落在陰影部分據(jù)此可估計(jì)陰影部分的面積是()A. B. C.10 D.3.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.4.已知集合,則的值域?yàn)椋ǎ〢. B. C. D.5.已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.6.已知為定義在上的偶函數(shù),當(dāng)時(shí),,則()A. B. C. D.7.函數(shù)的部分圖象大致為()A. B.C. D.8.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要9.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對(duì)稱,若實(shí)數(shù)滿足,則的取值范圍是()A. B. C. D.10.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.11.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對(duì)今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽(yáng)太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長(zhǎng)為,陰陽(yáng)太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.12.運(yùn)行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.2017二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是等比數(shù)列的前項(xiàng)的和,成等差數(shù)列,則的值為_____.14.某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,將這兩張卡片上數(shù)字之差的絕對(duì)值的1.4倍作為其獎(jiǎng)金.若隨機(jī)變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎(jiǎng)金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.15.定義,已知,,若恰好有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.16.若,則=____,=___.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,求的面積的值(或最大值).已知的內(nèi)角,,所對(duì)的邊分別為,,,三邊,,與面積滿足關(guān)系式:,且,求的面積的值(或最大值).18.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實(shí)數(shù)的取值范圍.19.(12分)在角中,角A、B、C的對(duì)邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長(zhǎng).20.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中.若問(wèn)題中的正整數(shù)存在,求的值;若不存在,說(shuō)明理由.設(shè)正數(shù)等比數(shù)列的前項(xiàng)和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?21.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個(gè)內(nèi)角,若,求的值;22.(10分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.2、D【解析】

直接根據(jù)幾何概型公式計(jì)算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點(diǎn)睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.3、D【解析】

根據(jù)等差數(shù)列公式直接計(jì)算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.4、A【解析】

先求出集合,化簡(jiǎn)=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域?yàn)楣蔬xA【點(diǎn)睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題5、B【解析】

求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴在上只有一個(gè)極大值也是最大值,顯然時(shí),,時(shí),,因此要使函數(shù)有兩個(gè)零點(diǎn),則,∴.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.6、D【解析】

判斷,利用函數(shù)的奇偶性代入計(jì)算得到答案.【詳解】∵,∴.故選:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.7、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況。【詳解】,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B?!军c(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。8、B【解析】

根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問(wèn)題,關(guān)鍵是要弄清楚誰(shuí)是條件,誰(shuí)是結(jié)論.9、C【解析】

根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對(duì)稱,則函數(shù)的圖象關(guān)于軸對(duì)稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.10、D【解析】

根據(jù)三視圖判斷出幾何體是由一個(gè)三棱錐和一個(gè)三棱柱構(gòu)成,利用錐體和柱體的體積公式計(jì)算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個(gè)三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點(diǎn)睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.11、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.12、D【解析】

依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

設(shè)等比數(shù)列的公比設(shè)為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項(xiàng)間的關(guān)系求解即可.【詳解】解:等比數(shù)列的公比設(shè)為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解以及運(yùn)用,屬于中檔題.14、20.2【解析】

分別求出隨機(jī)變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計(jì)算得解.【詳解】設(shè)a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點(diǎn)睛】此題考查隨機(jī)變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機(jī)變量取值的概率,根據(jù)公式準(zhǔn)確計(jì)算期望和方差.15、【解析】

根據(jù)題意,分類討論求解,當(dāng)時(shí),根據(jù)指數(shù)函數(shù)的圖象和性質(zhì)無(wú)零點(diǎn),不合題意;當(dāng)時(shí),令,得,令,得或,再分當(dāng),兩種情況討論求解.【詳解】由題意得:當(dāng)時(shí),在軸上方,且為增函數(shù),無(wú)零點(diǎn),至多有兩個(gè)零點(diǎn),不合題意;當(dāng)時(shí),令,得,令,得或,如圖所示:當(dāng)時(shí),即時(shí),要有3個(gè)零點(diǎn),則,解得;當(dāng)時(shí),即時(shí),要有3個(gè)零點(diǎn),則,令,,所以在是減函數(shù),又,要使,則須,所以.綜上:實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題主要考查二次函數(shù),指數(shù)函數(shù)的圖象和分段函數(shù)的零點(diǎn)問(wèn)題,還考查了分類討論的思想和運(yùn)算求解的能力,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬于中檔題.16、12821【解析】

令,求得的值.利用展開式的通項(xiàng)公式,求得的值.【詳解】令,得.展開式的通項(xiàng)公式為,當(dāng)時(shí),為,即.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式,考查賦值法求解二項(xiàng)式系數(shù)有關(guān)問(wèn)題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、見解析【解析】

若選擇①,結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,將代入,得.又,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴,故的面積的最大值為,此時(shí).若選擇②,,結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,則,此時(shí)為等腰直角三角形,.若選擇③,,則結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,則.18、(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【解析】

(Ⅰ)對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;(Ⅱ)對(duì)函數(shù)進(jìn)行求導(dǎo),由題意知,為增函數(shù)等價(jià)于在區(qū)間恒成立,利用分離參數(shù)法和基本不等式求最值即可求出實(shí)數(shù)的取值范圍.【詳解】(Ⅰ)由題意知,函數(shù)的定義域?yàn)椋?dāng)時(shí),,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.(Ⅱ)由題意得在區(qū)間恒成立,即在區(qū)間恒成立.,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.所以,所以的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、利用分離參數(shù)法和基本不等式求最值求參數(shù)的取值范圍;考查運(yùn)算求解能力和邏輯推理能力;利用導(dǎo)數(shù)把函數(shù)單調(diào)性問(wèn)題轉(zhuǎn)化為不等式恒成立問(wèn)題是求解本題的關(guān)鍵;屬于中檔題、常考題型.19、(1);(2)1.【解析】

(1)由正弦定理化簡(jiǎn)已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長(zhǎng)的值.【詳解】(1)由題意,在中,因?yàn)?,由正弦定理,可得sinAsinB=sinBcosA,又因?yàn)?,可得sinB≠0,所以sinA=cosA,即:tanA=,因?yàn)锳∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長(zhǎng)a+b+c=5+7=1.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、見解析【解析】

根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項(xiàng)公式,由即可求得的值;根據(jù)等式,變形可得,分別討論取①②③中的一個(gè),結(jié)合等比數(shù)列通項(xiàng)公式代入化簡(jiǎn),檢驗(yàn)是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設(shè)正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當(dāng)時(shí),滿足成立.若選②,∵,∴,∴,∴,∴方程無(wú)正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當(dāng)時(shí),滿

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論