版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省廣州市增城區(qū)四校高三壓軸卷數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)與的圖象上存在關(guān)于直線對稱的點,則的取值范圍是()A. B. C. D.2.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.3.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.94.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,例如:,,,那么在不超過18的素數(shù)中隨機選取兩個不同的數(shù),其和等于16的概率為()A. B. C. D.5.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.46.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.47.設(shè),滿足約束條件,則的最大值是()A. B. C. D.8.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺9.函數(shù)的圖像大致為()A. B.C. D.10.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定11.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值12.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),令,,若,表示不超過實數(shù)的最大整數(shù),記數(shù)列的前項和為,則_________14.記為數(shù)列的前項和,若,則__________.15.的展開式中的常數(shù)項為__________.16.設(shè)實數(shù)x,y滿足,則點表示的區(qū)域面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當時,要使恒成立,求實數(shù)的取值范圍.18.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于兩點,求的值.19.(12分)在直角坐標平面中,已知的頂點,,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設(shè)過點且不垂直于軸的直線與交于,兩點,點關(guān)于軸的對稱點為,證明:直線過軸上的定點.20.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當時,求的面積;(2)設(shè)直線與橢圓的另一個交點為,當為中點時,求的值.21.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.22.(10分)為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進行了考核.記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機抽取了30名學(xué)生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學(xué)生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學(xué)生的考核成績在區(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當時培訓(xùn)有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運算求解等數(shù)學(xué)能力,屬于難題.2、D【解析】
畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D【點睛】本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題.3、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數(shù)量積運算,掌握基本概念和公式即可解決,屬于簡單題目.4、B【解析】
先求出從不超過18的素數(shù)中隨機選取兩個不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素數(shù)有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題不可以列舉出所有事件但可以用分步計數(shù)得到,屬于基礎(chǔ)題.5、B【解析】
因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!6、D【解析】
如圖所示:過點作垂直準線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設(shè),,則,當,即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.7、D【解析】
作出不等式對應(yīng)的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.8、A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.9、A【解析】
根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.10、B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.11、D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.12、B【解析】
每個式子的值依次構(gòu)成一個數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項歸納出遞推關(guān)系,從而可確定數(shù)列的一些項.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
根據(jù)導(dǎo)數(shù)的運算,結(jié)合數(shù)列的通項公式的求法,求得,,,進而得到,再利用放縮法和取整函數(shù)的定義,即可求解.【詳解】由題意,函數(shù),且,,可得,,又由,可得為常數(shù)列,且,數(shù)列表示首項為4,公差為2的等差數(shù)列,所以,其中數(shù)列滿足,所以,所以,又由,可得數(shù)列的前n項和為,數(shù)列的前n項和為,所以數(shù)列的前項和為,滿足,所以,即,又由表示不超過實數(shù)的最大整數(shù),所以.故答案為:4.【點睛】本題主要考查了函數(shù)的導(dǎo)數(shù)的計算,以及等差數(shù)列的通項公式,累加法求解數(shù)列的通項公式,以及裂項法求數(shù)列的和的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于中檔試題.14、-254【解析】
利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數(shù)列,所以,即,所以。故答案為:【點睛】本題考查已知與的關(guān)系求,考查學(xué)生的數(shù)學(xué)運算求解能力,是一道中檔題.15、31【解析】
由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數(shù)項為:,得解.【詳解】解:,則的展開式中的常數(shù)項為:.故答案為:31.【點睛】本題考查二項式定理及其展開式的通項公式,求某項的導(dǎo)數(shù),考查計算能力.16、【解析】
先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)求函數(shù)的導(dǎo)函數(shù),即可求得切線的斜率,則切線方程得解;(Ⅱ)構(gòu)造函數(shù),對參數(shù)分類討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【詳解】(Ⅰ)當時,,則.所以.又,故所求切線方程為,即.(Ⅱ)依題意,得,即恒成立.令,則.①當時,因為,不合題意.②當時,令,得,,顯然.令,得或;令,得.所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.當時,,,所以,只需,所以,所以實數(shù)的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,以及利用導(dǎo)數(shù)研究恒成立問題,屬綜合中檔題.18、(1);(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.(2)利用(1)的結(jié)論,進一步利用一元二次方程根和系數(shù)的關(guān)系式的應(yīng)用求出結(jié)果.【詳解】解:(1)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為直角坐標方程為.曲線的極坐標方程為.轉(zhuǎn)換為,轉(zhuǎn)換為直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為標準式為(為參數(shù)),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎(chǔ)本題考查的知識要點:主要考查極坐標,參數(shù)方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數(shù)方程的公式,及與解析幾何相關(guān)的直線與曲線位置關(guān)系的一些解題思路.19、(1)();(2)證明見解析.【解析】
(1)設(shè)點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設(shè),由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過軸上的定點.【點睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點問題,考查學(xué)生的計算能力,屬于中檔題.20、(1);(2)或【解析】
(1)聯(lián)立直線的方程和橢圓方程,求得交點的橫坐標,由此求得三角形的面積.(2)法一:根據(jù)的坐標求得的坐標,將的坐標都代入橢圓方程,化簡后求得的坐標,進而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點的坐標,進而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點,則且.(2)法一:設(shè)點因為,,所以又點,都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點睛】本小題主要考查直線和橢圓的位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東體育職業(yè)技術(shù)學(xué)院《審計學(xué)實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《數(shù)字視頻制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東食品藥品職業(yè)學(xué)院《光信息處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東省外語藝術(shù)職業(yè)學(xué)院《基礎(chǔ)閱讀(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東輕工職業(yè)技術(shù)學(xué)院《建筑施工》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名健康職業(yè)學(xué)院《體育舞蹈專項理論與實踐(6)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名農(nóng)林科技職業(yè)學(xué)院《修建性詳細規(guī)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 四年級數(shù)學(xué)(簡便運算)計算題專項練習(xí)與答案
- 【2022屆走向高考】高三數(shù)學(xué)一輪(人教A版)階段性測試題12(綜合素質(zhì)能力測試)
- 2021年高考英語考點總動員系列-專題10-交際用語(解析版)
- 【蘇教版】2022-2023學(xué)年六年級數(shù)學(xué)上冊期末試卷(及答案)
- 2023-2024學(xué)年連云港市灌云縣四年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含答案
- 湖南省懷化市鶴城區(qū)2023年數(shù)學(xué)三下期末監(jiān)測試題含解析
- 項目工程安全管理責(zé)任區(qū)域劃分表
- 2023年學(xué)校食堂審計發(fā)現(xiàn)問題整改報告3篇
- 教育培訓(xùn)學(xué)校(機構(gòu))課堂教學(xué)反饋表
- 2023年全國測繪生產(chǎn)成本費用定額
- GB/T 6480-2002鑿巖用硬質(zhì)合金釬頭
- GB/T 5447-1997煙煤粘結(jié)指數(shù)測定方法
- GB/T 2820.5-2009往復(fù)式內(nèi)燃機驅(qū)動的交流發(fā)電機組第5部分:發(fā)電機組
- GB/T 17684-2008貴金屬及其合金術(shù)語
評論
0/150
提交評論