版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省農(nóng)興中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)滿(mǎn)足當(dāng)時(shí),,且當(dāng)時(shí),;當(dāng)時(shí),且).若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)恰好有3對(duì),則的取值范圍是()A. B. C. D.2.設(shè)復(fù)數(shù)滿(mǎn)足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.3.某人用隨機(jī)模擬的方法估計(jì)無(wú)理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過(guò)點(diǎn)作軸的垂線(xiàn)與曲線(xiàn)相交于點(diǎn),過(guò)作軸的垂線(xiàn)與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線(xiàn)上方的有粒,則無(wú)理數(shù)的估計(jì)值是()A. B. C. D.4.設(shè)函數(shù),若在上有且僅有5個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.5.如圖,在直三棱柱中,,,點(diǎn)分別是線(xiàn)段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.6.若的展開(kāi)式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.37.已知四棱錐的底面為矩形,底面,點(diǎn)在線(xiàn)段上,以為直徑的圓過(guò)點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.8.已知是虛數(shù)單位,若,則()A. B.2 C. D.109.上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國(guó)古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國(guó)古代音律與歷法的密切聯(lián)系.圖2為骨笛測(cè)量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測(cè)量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽(yáng)光線(xiàn))與春秋分日光(當(dāng)日正午太陽(yáng)光線(xiàn))的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬(wàn)年持續(xù)減小,其正切值及對(duì)應(yīng)的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過(guò)計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年10.地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國(guó)致力于發(fā)展風(fēng)力發(fā)電,近10年來(lái),全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量連年攀升,中國(guó)更是發(fā)展迅猛,2014年累計(jì)裝機(jī)容量就突破了,達(dá)到,中國(guó)的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級(jí)換代行動(dòng)中體現(xiàn)出大國(guó)的擔(dān)當(dāng)與決心.以下是近10年全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量與中國(guó)新增裝機(jī)容量圖.根據(jù)所給信息,正確的統(tǒng)計(jì)結(jié)論是()A.截止到2015年中國(guó)累計(jì)裝機(jī)容量達(dá)到峰值B.10年來(lái)全球新增裝機(jī)容量連年攀升C.10年來(lái)中國(guó)新增裝機(jī)容量平均超過(guò)D.截止到2015年中國(guó)累計(jì)裝機(jī)容量在全球累計(jì)裝機(jī)容量中占比超過(guò)11.若直線(xiàn)y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-12.過(guò)圓外一點(diǎn)引圓的兩條切線(xiàn),則經(jīng)過(guò)兩切點(diǎn)的直線(xiàn)方程是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等比數(shù)列的前項(xiàng)和為,若,則數(shù)列的公比是.14.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.15.的二項(xiàng)展開(kāi)式中,含項(xiàng)的系數(shù)為_(kāi)_________.16.已知直角坐標(biāo)系中起點(diǎn)為坐標(biāo)原點(diǎn)的向量滿(mǎn)足,且,,,存在,對(duì)于任意的實(shí)數(shù),不等式,則實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線(xiàn)交橢圓于兩點(diǎn),線(xiàn)段的中點(diǎn)在直線(xiàn)上,求證:線(xiàn)段的中垂線(xiàn)恒過(guò)定點(diǎn).19.(12分)如圖,在四棱錐中,平面,,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.20.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長(zhǎng)為2的正三角形,,為線(xiàn)段的中點(diǎn).(1)求證:平面平面;(2)若為線(xiàn)段上一點(diǎn),當(dāng)二面角的余弦值為時(shí),求三棱錐的體積.21.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線(xiàn)4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線(xiàn)ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線(xiàn)l過(guò)點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.22.(10分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷(xiāo)海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷(xiāo)合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷(xiāo),且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷(xiāo),利潤(rùn)記為100元.①求10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是多少件;②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象,分類(lèi)利用圖像列出有3個(gè)交點(diǎn)時(shí)滿(mǎn)足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象,如圖所示,當(dāng)時(shí),對(duì)稱(chēng)后的圖象不可能與在的圖象有3個(gè)交點(diǎn);當(dāng)時(shí),要使函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng)后的圖象與所作的圖象有3個(gè)交點(diǎn),則,解得.故選:C.【點(diǎn)睛】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個(gè)數(shù)問(wèn)題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.2、B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即可求解.【詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.3、D【解析】
利用定積分計(jì)算出矩形中位于曲線(xiàn)上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線(xiàn)的方程為,矩形中位于曲線(xiàn)上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時(shí)也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.4、A【解析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),,∵在上有且僅有5個(gè)零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.5、D【解析】
過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)?,,所以,即過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點(diǎn)睛】本題考查二面角的大小的判斷,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.6、C【解析】
先研究的展開(kāi)式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_(kāi)式的通項(xiàng)為,所以的展開(kāi)式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)線(xiàn)面垂直的性質(zhì)以及線(xiàn)面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫?,平面,所?又,,所以平面,則.易知,.在中,,即,化簡(jiǎn)得.在中,,.所以.因?yàn)椋?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線(xiàn)面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線(xiàn)面垂直的判定和性質(zhì),屬中檔題.8、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計(jì)算即可.【詳解】因?yàn)?,所以,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.9、D【解析】
先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識(shí)計(jì)算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項(xiàng).【詳解】解:由題意,可設(shè)冬至日光與垂直線(xiàn)夾角為,春秋分日光與垂直線(xiàn)夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫(huà)出如下平面幾何圖形:則,,.,估計(jì)該骨笛的大致年代早于公元前6000年.故選:.【點(diǎn)睛】本題考查利用三角函數(shù)解決實(shí)際問(wèn)題的能力,運(yùn)用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學(xué)建模思想,以及數(shù)學(xué)運(yùn)算能力,屬中檔題.10、D【解析】
先列表分析近10年全球風(fēng)力發(fā)電新增裝機(jī)容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計(jì)裝機(jī)容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機(jī)容量39.140.645.135.851.863.854.953.551.4中國(guó)累計(jì)裝機(jī)裝機(jī)容量逐年遞增,A錯(cuò)誤;全球新增裝機(jī)容量在2015年之后呈現(xiàn)下降趨勢(shì),B錯(cuò)誤;經(jīng)計(jì)算,10年來(lái)中國(guó)新增裝機(jī)容量平均每年為,選項(xiàng)C錯(cuò)誤;截止到2015年中國(guó)累計(jì)裝機(jī)容量,全球累計(jì)裝機(jī)容量,占比為,選項(xiàng)D正確.故選:D【點(diǎn)睛】本題考查條形圖,考查基本分析求解能力,屬基礎(chǔ)題.11、C【解析】
直線(xiàn)過(guò)定點(diǎn),直線(xiàn)y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線(xiàn)過(guò)定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱(chēng)性可知k=±.故選C.【點(diǎn)睛】本題考查過(guò)定點(diǎn)的直線(xiàn)系問(wèn)題,以及直線(xiàn)和圓的位置關(guān)系,是基礎(chǔ)題.12、A【解析】過(guò)圓外一點(diǎn),引圓的兩條切線(xiàn),則經(jīng)過(guò)兩切點(diǎn)的直線(xiàn)方程為,故選.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
當(dāng)q=1時(shí),.當(dāng)時(shí),,所以.14、1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤(rùn)為元
則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線(xiàn)然后把直線(xiàn)向可行域平移,
由圖象知當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),目標(biāo)函數(shù)的截距最大,此時(shí)最大,
由可得,即此時(shí)最大,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤(rùn),最大利潤(rùn)為1.【點(diǎn)睛】本題考查用線(xiàn)性規(guī)劃知識(shí)求利潤(rùn)的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線(xiàn)性規(guī)劃的知識(shí)進(jìn)行求解是解決本題的關(guān)鍵.15、【解析】
寫(xiě)出二項(xiàng)展開(kāi)式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開(kāi)式、需熟記二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.16、【解析】
由題意可設(shè),,,由向量的坐標(biāo)運(yùn)算,以及恒成立思想可設(shè),的最小值即為點(diǎn),到直線(xiàn)的距離,求得,可得不大于.【詳解】解:,且,可設(shè),,,,可得,可得的終點(diǎn)均在直線(xiàn)上,由于為任意實(shí)數(shù),可得時(shí),的最小值即為點(diǎn)到直線(xiàn)的距離,可得,對(duì)于任意的實(shí)數(shù),不等式,可得,故答案為:.【點(diǎn)睛】本題主要考查向量的模的求法,以及兩點(diǎn)的距離的運(yùn)用,考查直線(xiàn)方程的運(yùn)用,以及點(diǎn)到直線(xiàn)的距離,考查運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類(lèi)討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,則,此時(shí),函數(shù)為減函數(shù);當(dāng)時(shí),,則,此時(shí),函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當(dāng)時(shí),即當(dāng)時(shí),,由,得,此時(shí),函數(shù)為增函數(shù);由,得,此時(shí),函數(shù)為減函數(shù).則,不合乎題意;②當(dāng)時(shí),即時(shí),.不妨設(shè),其中,令,則或.(i)當(dāng)時(shí),,當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù).此時(shí),而,構(gòu)造函數(shù),,則,所以,函數(shù)在區(qū)間上單調(diào)遞增,則,即當(dāng)時(shí),,所以,.,符合題意;②當(dāng)時(shí),,函數(shù)在上為增函數(shù),,符合題意;③當(dāng)時(shí),同理可得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時(shí),則,解得.綜上所述,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性與最值,考查恒成立問(wèn)題,正確求導(dǎo)和分類(lèi)討論是關(guān)鍵,屬于難題.18、(Ⅰ);(Ⅱ)詳見(jiàn)解析.【解析】
(Ⅰ)把點(diǎn)代入橢圓方程,結(jié)合離心率得到關(guān)于的方程,解方程即可;(Ⅱ)聯(lián)立直線(xiàn)與橢圓方程得到關(guān)于的一元二次方程,利用韋達(dá)定理和中垂線(xiàn)的定義求出線(xiàn)段的中垂線(xiàn)方程即可證明.【詳解】(Ⅰ)由已知橢圓過(guò)點(diǎn)得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達(dá)定理可得,,設(shè)的中點(diǎn)為,得,即,,的中垂線(xiàn)方程為,即,故得中垂線(xiàn)恒過(guò)點(diǎn).【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線(xiàn)與橢圓的位置關(guān)系及橢圓中的定值問(wèn)題;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;正確求出橢圓方程和利用中垂線(xiàn)的定義正確表示出中垂線(xiàn)方程是求解本題的關(guān)鍵;屬于中檔題.19、(1)見(jiàn)解析;(2)【解析】
(1)取的中點(diǎn),連接,根據(jù)中位線(xiàn)的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線(xiàn)為軸建立空間直角坐標(biāo)系,再求得平面的法向量與平面的法向量進(jìn)而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點(diǎn),連接.又為的中點(diǎn),則是的中位線(xiàn).所以且.又且,所以且.所以四邊形是平行四邊形.所以.因?yàn)?為的中點(diǎn),所以.因?yàn)?所以.因?yàn)槠矫?所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線(xiàn)為軸建立如圖所示的空間直角坐標(biāo)系:因?yàn)?所以點(diǎn).則.設(shè)平面的法向量為,由,得,令,得平面的一個(gè)法向量為;顯然平面的一個(gè)法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【點(diǎn)睛】本題主要考查了線(xiàn)面垂直的證明以及建立空間直角坐標(biāo)系求解二面角的問(wèn)題,需要用到線(xiàn)線(xiàn)垂直與線(xiàn)面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.20、(1)見(jiàn)解析;(2).【解析】
(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,設(shè),求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉(zhuǎn)化即得解.【詳解】(1)證明:因?yàn)槭钦切?,為線(xiàn)段的中點(diǎn),所以.因?yàn)槭橇庑危裕驗(yàn)?,所以是正三角形,所以,所以平面.又,所以平面.因?yàn)槠矫妫云矫嫫矫妫?)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系.則.于是,,.設(shè)面的一個(gè)法向量,由得令,則,即.設(shè),易得,.設(shè)面的一個(gè)法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點(diǎn)睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識(shí)點(diǎn),考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21、(2)(x﹣2)2+y2=2.(2)(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 受資助學(xué)生典型事跡材料范文(14篇)
- 《天體物理學(xué)時(shí)間》課件
- 文物數(shù)字化與5G技術(shù)應(yīng)用-洞察分析
- 微笑線(xiàn)與年齡相關(guān)性-洞察分析
- 栓子催化技術(shù)進(jìn)展-洞察分析
- 勤儉節(jié)約先進(jìn)事跡材料(范文8篇)
- 網(wǎng)絡(luò)拓?fù)溲莼治?洞察分析
- 消費(fèi)者價(jià)值共創(chuàng)研究-洞察分析
- 營(yíng)銷(xiāo)組合策略在批發(fā)零售中的應(yīng)用-洞察分析
- 醫(yī)療保險(xiǎn)個(gè)人工作總結(jié)(5篇)
- 青年應(yīng)有鴻鵠志當(dāng)騎駿馬踏平川課件高三上學(xué)期勵(lì)志主題班會(huì)
- 河北省唐山市2021-2022學(xué)年高三上學(xué)期語(yǔ)文期末試卷
- oa系統(tǒng)合同范例
- 華電甘肅能源有限公司華電系統(tǒng)內(nèi)外招聘真題
- 員工宿舍管理?xiàng)l例
- 建設(shè)精神病醫(yī)院
- 《文明禮儀概述培訓(xùn)》課件
- 保險(xiǎn)金信托課件
- 2024應(yīng)急預(yù)案編制導(dǎo)則
- 新疆大學(xué)答辯模板課件模板
- 數(shù)值分析智慧樹(shù)知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論