![黑龍江省泰來縣第一中學2025屆高三第三次測評數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view11/M01/0B/35/wKhkGWdy7IeAU9A_AAHMDRo1XdE690.jpg)
![黑龍江省泰來縣第一中學2025屆高三第三次測評數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view11/M01/0B/35/wKhkGWdy7IeAU9A_AAHMDRo1XdE6902.jpg)
![黑龍江省泰來縣第一中學2025屆高三第三次測評數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view11/M01/0B/35/wKhkGWdy7IeAU9A_AAHMDRo1XdE6903.jpg)
![黑龍江省泰來縣第一中學2025屆高三第三次測評數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view11/M01/0B/35/wKhkGWdy7IeAU9A_AAHMDRo1XdE6904.jpg)
![黑龍江省泰來縣第一中學2025屆高三第三次測評數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view11/M01/0B/35/wKhkGWdy7IeAU9A_AAHMDRo1XdE6905.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省泰來縣第一中學2025屆高三第三次測評數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.322.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.253.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.34.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.5.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.6.已知向量與向量平行,,且,則()A. B.C. D.7.在三角形中,,,求()A. B. C. D.8.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.9.設是虛數(shù)單位,則“復數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件10.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.11.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.12.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設,則除以的余數(shù)是______.14.若關(guān)于的不等式在時恒成立,則實數(shù)的取值范圍是_____15.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.16.某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖:在中,,,.(1)求角;(2)設為的中點,求中線的長.18.(12分)已知數(shù)列,其前項和為,若對于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.19.(12分)某商場為改進服務質(zhì)量,在進場購物的顧客中隨機抽取了人進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認為顧客購物體驗的滿意度與性別有關(guān)?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.附表及公式:.20.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學期望.21.(12分)已知函數(shù).(1)若函數(shù),求的極值;(2)證明:.(參考數(shù)據(jù):)22.(10分)如圖,已知橢圓經(jīng)過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.2、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.3、D【解析】
畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數(shù)為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.4、A【解析】
設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結(jié)果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關(guān)平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.5、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.6、B【解析】
設,根據(jù)題意得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.7、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.8、B【解析】
根據(jù)角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.9、D【解析】
結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項.【詳解】若復數(shù)為純虛數(shù),則,所以,若,不妨設,此時復數(shù),不是純虛數(shù),所以“復數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.10、A【解析】
設,因為,得到,利用直線的斜率公式,得到,結(jié)合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.11、D【解析】
根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.12、B【解析】
求出函數(shù)的導數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導數(shù)的幾何意義,切線方程的求法,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數(shù)為1.故答案為:1【點睛】本題考查二項式定理的綜合應用,涉及余數(shù)的問題,解決此類問題的關(guān)鍵是靈活構(gòu)造二項式,并將它展開分析,本題是一道基礎(chǔ)題.14、【解析】
利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進而求得的取值范圍?!驹斀狻坑傻茫瑑蛇呁?,得到,,,設,,由函數(shù)在上遞減,所以,故實數(shù)的取值范圍是。【點睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。15、.【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.16、【解析】
根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【詳解】設抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點睛】本題主要考查了正弦定理和余弦定理在解三角形中的應用,考查三角函數(shù)知識的運用,屬于中檔題.18、(1)證明見解析;(2).【解析】
(1)用數(shù)學歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個整數(shù),可得結(jié)果.【詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學歸納法證明數(shù)列是等差數(shù)列,假設成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設,,∴是一個整數(shù),∴,從而又當時,有,綜上,的最小值為.【點睛】本題主要考查由遞推關(guān)系得通項公式和等差數(shù)列的性質(zhì),關(guān)鍵是利用數(shù)學歸納法證明數(shù)列是等差數(shù)列,屬于難題.19、有的把握認為顧客購物體驗的滿意度與性別有關(guān);.【解析】
由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗的滿意度與性別有關(guān);獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所以,有的把握認為顧客購物體驗的滿意度與性別有關(guān).獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有:,,,,,,,,,,,,,,,共個.其中僅有1人是女顧客的基本事件有:,,,,,,,,共個.所以獲得紀念品的人中僅有人是女顧客的概率.【點睛】本小題主要考查統(tǒng)計案例、卡方分布、概率等基本知識,考查概率統(tǒng)計基本思想以及抽象概括等能力和應用意識,屬于中檔題.20、(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點睛】本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎(chǔ)題21、(1)見解析;(1)見證明【解析】
(1)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(1)問題轉(zhuǎn)化為證ex﹣x1﹣xlnx﹣1>0,根據(jù)xlnx≤x(x﹣1),問題轉(zhuǎn)化為只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(1),,當,,當,,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當且僅當x=1時取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時,F(xiàn)′(x)≤0,F(xiàn)(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國排檔鎖扣拉線行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國單纖雙向組件行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國燈飾金邊條數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國棒材餐具數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國密集檔案柜數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國半封閉氟利昂機組數(shù)據(jù)監(jiān)測研究報告
- 體育表演醫(yī)療保健措施考核試卷
- 2025-2030年廚電產(chǎn)品社群運營企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年按摩器APP控制行業(yè)跨境出海戰(zhàn)略研究報告
- 地下建筑測繪與安全評估考核試卷
- 8.1認識生命(課件)-2024-2025學年統(tǒng)編版道德與法治七年級上冊
- 陜西省西安市2023-2024學年七年級上學期期末考試數(shù)學試題(含答案)
- 蘇州市2025屆高三期初陽光調(diào)研(零模)政治試卷(含答案)
- 【萬通地產(chǎn)償債能力存在的問題及優(yōu)化建議(數(shù)據(jù)論文)11000字】
- 人教版PEP五年級英語下冊單詞表與單詞字帖 手寫體可打印
- 2024年安徽省初中學業(yè)水平考試中考數(shù)學試卷(真題+答案)
- 學前兒童美術(shù)教育與活動指導第4版全套教學課件
- 標桿門店打造方案
- 2022-2023年人教版九年級化學(上冊)期末試題及答案(完整)
- 食品安全公益訴訟
- 游泳池經(jīng)營合作方案
評論
0/150
提交評論