河南省駐馬店市正陽縣高級(jí)中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁
河南省駐馬店市正陽縣高級(jí)中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁
河南省駐馬店市正陽縣高級(jí)中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁
河南省駐馬店市正陽縣高級(jí)中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁
河南省駐馬店市正陽縣高級(jí)中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省駐馬店市正陽縣高級(jí)中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.22.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.3.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.4.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.55.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.6.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.7.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.8.已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.9.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④10.已知集合,則()A. B. C. D.11.關(guān)于函數(shù),有下述三個(gè)結(jié)論:①函數(shù)的一個(gè)周期為;②函數(shù)在上單調(diào)遞增;③函數(shù)的值域?yàn)?其中所有正確結(jié)論的編號(hào)是()A.①② B.② C.②③ D.③12.如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在處的切線方程為__________.14.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為__________.15.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則16.已知函數(shù),若,則實(shí)數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的解集包含,求的取值范圍.18.(12分)已知的三個(gè)內(nèi)角所對(duì)的邊分別為,向量,,且.(1)求角的大??;(2)若,求的值19.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和.20.(12分)如圖,在四棱錐中,,,,和均為邊長(zhǎng)為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為3.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.22.(10分)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù).(Ⅰ)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點(diǎn)為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

作出可行域,直線目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.2、A【解析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長(zhǎng)為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.3、C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.4、A【解析】

根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.5、D【解析】

首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.6、A【解析】

聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.7、B【解析】

由三視圖判斷出原圖,將幾何體補(bǔ)形為長(zhǎng)方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長(zhǎng)為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長(zhǎng)方體,該長(zhǎng)方體外接球就是該三棱柱的外接球,長(zhǎng)方體對(duì)角線就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.8、D【解析】

分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).9、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)椋云矫?,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.10、A【解析】

考慮既屬于又屬于的集合,即得.【詳解】.故選:【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.11、C【解析】

①用周期函數(shù)的定義驗(yàn)證.②當(dāng)時(shí),,,再利用單調(diào)性判斷.③根據(jù)平移變換,函數(shù)的值域等價(jià)于函數(shù)的值域,而,當(dāng)時(shí),再求值域.【詳解】因?yàn)椋盛馘e(cuò)誤;當(dāng)時(shí),,所以,所以在上單調(diào)遞增,故②正確;函數(shù)的值域等價(jià)于函數(shù)的值域,易知,故當(dāng)時(shí),,故③正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.12、C【解析】

建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用導(dǎo)數(shù)的幾何意義,對(duì)求導(dǎo)后在計(jì)算在處導(dǎo)函數(shù)的值,再利用點(diǎn)斜式列出方程化簡(jiǎn)即可.【詳解】,則切線的斜率為.又,所以函數(shù)的圖象在處的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)的幾何意義求解函數(shù)在某點(diǎn)處的切線方程問題,需要注意求導(dǎo)法則與計(jì)算,屬于基礎(chǔ)題.14、.【解析】

由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.15、-5【解析】

畫出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點(diǎn)A時(shí),z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點(diǎn)A【點(diǎn)睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會(huì)在可行域的端點(diǎn)或邊界上取得。16、【解析】

畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相反的單調(diào)性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)對(duì)范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當(dāng)時(shí),”恒成立,利用絕對(duì)值不等式的性質(zhì)可得:,問題得解.【詳解】當(dāng)時(shí),,當(dāng)時(shí),由得,解得;當(dāng)時(shí),無解;當(dāng)時(shí),由得,解得,所以的解集為(2)的解集包含等價(jià)于在上恒成立,當(dāng)時(shí),等價(jià)于恒成立,而,∴,故滿足條件的的取值范圍是【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,還考查了轉(zhuǎn)化能力及絕對(duì)值不等式的性質(zhì),考查計(jì)算能力,屬于中檔題.18、(1)(2)【解析】

利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進(jìn)而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得,,又因?yàn)?,所以,解得或,∵,?在中,由余弦定理得,即①又因?yàn)?把代入①整理得,,解得,,所以為等邊三角形,,∴,即.【點(diǎn)睛】本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19、(1),;(2).【解析】

(1)根據(jù)題意同時(shí)利用等差、等比數(shù)列的通項(xiàng)公式即可求得數(shù)列和的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法即可求得數(shù)列的前2020項(xiàng)的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因?yàn)棰佼?dāng)時(shí),②由①②得,,即,又當(dāng)時(shí),不滿足上式,.數(shù)列的前2020項(xiàng)的和設(shè)③,則④,由③④得:,所以,所以.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式、性質(zhì),錯(cuò)位相減法求和,考查學(xué)生的邏輯推理能力,化歸與轉(zhuǎn)化能力及綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學(xué)運(yùn)算.是中檔題.20、(1)見證明;(2)【解析】

(1)取的中點(diǎn),連接,要證平面平面,轉(zhuǎn)證平面,即證,即可;(2)以為坐標(biāo)原點(diǎn),以為軸正方向,建立如圖所示的空間直角坐標(biāo)系,分別求出平面與平面的法向量,代入公式,即可得到結(jié)果.【詳解】(1)取的中點(diǎn),連接,因?yàn)榫鶠檫呴L(zhǎng)為的等邊三角形,所以,,且因?yàn)椋?,所以,又因?yàn)?,平面,平面,所以平?又因?yàn)槠矫?,所以平面平?(2)因?yàn)椋瑸榈冗吶切?,所以,又因?yàn)?,所以,,在中,由正弦定理,得:,所?以為坐標(biāo)原點(diǎn),以為軸正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,設(shè)平面的法向量為,則,即,令,則平面的一個(gè)法向量為,依題意,平面的一個(gè)法向量所以故二面角的余弦值為.【點(diǎn)睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由題意可得,,,解得即可求出橢圓的C的方程;(Ⅱ)由已知設(shè)直線l的方程為y=k(x-2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求得B的坐標(biāo),再寫出M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論