版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省商丘市重點中學2025屆高考適應(yīng)性考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,2.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.03.點為的三條中線的交點,且,,則的值為()A. B. C. D.4.設(shè)全集,集合,,則()A. B. C. D.5.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.8.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.9.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.10.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.11.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.12.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值二、填空題:本題共4小題,每小題5分,共20分。13.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.14.已知函數(shù),則過原點且與曲線相切的直線方程為____________.15.已知向量=(-4,3),=(6,m),且,則m=__________.16.若函數(shù),其中且,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某大學開學期間,該大學附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機選取一天,估計這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)18.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.19.(12分)已知矩陣,求矩陣的特征值及其相應(yīng)的特征向量.20.(12分)某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標值頻數(shù)2184814162(1)請估計A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應(yīng)該對哪一套設(shè)備加大生產(chǎn)規(guī)模?21.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.22.(10分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【點睛】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.2、B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.3、B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.4、D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.5、C【解析】所對應(yīng)的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復(fù)平面的概念,屬于簡單題.6、C【解析】
化簡復(fù)數(shù)為、的形式,可以確定對應(yīng)的點位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對應(yīng)的坐標為位于第三象限故選:.【點睛】本題考查復(fù)數(shù)代數(shù)形式的運算,復(fù)數(shù)和復(fù)平面內(nèi)點的對應(yīng)關(guān)系,屬于基礎(chǔ)題.7、D【解析】
如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學生的空間想象能力和計算能力.8、A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:A.【點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎(chǔ)題.9、C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.10、B【解析】
將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.11、B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關(guān)的新定義問題,其本質(zhì)在于弄清計數(shù)原理,分類討論,分別求解.12、C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關(guān)系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數(shù)方程的運用,屬于中檔題.14、【解析】
設(shè)切點坐標為,利用導數(shù)求出曲線在切點的切線方程,將原點代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點坐標為,,,,則曲線在點處的切線方程為,由于該直線過原點,則,得,因此,則過原點且與曲線相切的直線方程為,故答案為.【點睛】本題考查導數(shù)的幾何意義,考查過點作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點坐標,并利用導數(shù)求出切線方程;(2)將所過點的坐標代入切線方程,求出參數(shù)的值,可得出切點的坐標;(3)將參數(shù)的值代入切線方程,可得出切線的方程.15、8.【解析】
利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.16、【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.【點睛】本題主要考查了二項式定理的應(yīng)用,以及導數(shù)的運算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準確求解導數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.4;(2);(3)應(yīng)選擇方案,理由見解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨立重復(fù)試驗概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計算兩種計算方式下的數(shù)學期望,并根據(jù)數(shù)學期望作出選擇.【詳解】(1)設(shè)事件為“隨機選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.【點睛】本題考查了頻率分布直方圖的簡單應(yīng)用,獨立重復(fù)試驗概率的求法,數(shù)學期望的求法并由期望作出方案選擇,屬于中檔題.18、(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設(shè)C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點到面的距離常用體積轉(zhuǎn)化來求,屬于中檔題19、矩陣屬于特征值的一個特征向量為,矩陣屬于特征值的一個特征向量為【解析】
先由矩陣特征值的定義列出特征多項式,令解方程可得特征值,再由特征值列出方程組,即可求得相應(yīng)的特征向量.【詳解】由題意,矩陣的特征多項式為,令,解得,,將代入二元一次方程組,解得,所以矩陣屬于特征值的一個特征向量為;同理,矩陣屬于特征值的一個特征向量為v【點睛】本題主要考查了矩陣的特征值與特征向量的計算,其中解答中熟記矩陣的特征值和特征向量的計算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1)30.2,29;(2)B設(shè)備【解析】
(1)平均數(shù)的估計值為組中值與頻率乘積的和;(2)要注意指標值落在內(nèi)的產(chǎn)品才視為合格品,列出A、B設(shè)備利潤分布列,算出期望即可作出決策.【詳解】(1)A設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標值頻數(shù)41640121810.根據(jù)樣本質(zhì)量指標平均值估計A設(shè)備生產(chǎn)一件產(chǎn)品質(zhì)量指標平均值為30.2.B設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標值頻數(shù)2184814162根據(jù)樣本質(zhì)量指標平均值估計B設(shè)備生產(chǎn)一件產(chǎn)品質(zhì)量指標平均值為29.(2)A設(shè)備生產(chǎn)一件產(chǎn)品的利潤記為X,B設(shè)備生產(chǎn)一件產(chǎn)品的利潤記為Y,X240180120PY240180120P若以生產(chǎn)一件產(chǎn)品的利潤作為決策依據(jù),企業(yè)應(yīng)加大B設(shè)備的生產(chǎn)規(guī)模.【點睛】本題考查平均數(shù)的估計值、離散隨機變量的期望,并利用期望作決策,是一個概率與統(tǒng)計綜合題,本題是一道中檔題.21、(1).(2)1【解析】
(1)先根據(jù)題意建立空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因為PA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南混凝土井蓋施工方案
- 咸寧醇酸磁漆施工方案
- 路面砂礫底基層施工方案
- 宜春陽臺石欄桿施工方案
- 美國奔馳隱形車衣施工方案
- 門頭鋁塑板吊頂施工方案
- 智能電表制造項目可行性研究報告
- 數(shù)字皮膚水份檢測儀行業(yè)深度研究報告
- 2025年塔板行業(yè)深度研究分析報告
- 2025年中國輸變電設(shè)備行業(yè)發(fā)展監(jiān)測及投資前景展望報告
- 2025年中國高純生鐵行業(yè)政策、市場規(guī)模及投資前景研究報告(智研咨詢發(fā)布)
- 2022-2024年浙江中考英語試題匯編:完形填空(學生版)
- 2025年廣東省廣州市荔灣區(qū)各街道辦事處招聘90人歷年高頻重點提升(共500題)附帶答案詳解
- 中試部培訓資料
- 硝化棉是天然纖維素硝化棉制造行業(yè)分析報告
- 央視網(wǎng)2025亞冬會營銷方案
- 北師大版數(shù)學三年級下冊豎式計算題100道
- 計算機網(wǎng)絡(luò)技術(shù)全套教學課件
- 屋頂分布式光伏發(fā)電項目施工重點難點分析及應(yīng)對措施
- 胃鏡下超聲穿刺護理配合
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(原卷版)
評論
0/150
提交評論