版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省大名一中2025屆高三最后一卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的部分圖象大致為()A. B.C. D.2.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.33.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國(guó)古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.下圖是源于其思想的一個(gè)程序圖,若,,則輸出的()A.3 B.4 C.5 D.64.若,則()A. B. C. D.5.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)6.給甲、乙、丙、丁四人安排泥工、木工、油漆三項(xiàng)工作,每項(xiàng)工作至少一人,每人做且僅做一項(xiàng)工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種7.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.848.已知復(fù)數(shù),則()A. B. C. D.29.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.10.某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多11.二項(xiàng)式的展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.36012.已知實(shí)數(shù)、滿足不等式組,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),其圖象關(guān)于直線對(duì)稱(chēng),當(dāng)時(shí),(其中是自然對(duì)數(shù)的底數(shù),若,則實(shí)數(shù)的值為_(kāi)____.14.在平面直角坐標(biāo)系中,雙曲線的焦距為,若過(guò)右焦點(diǎn)且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為_(kāi)___________.15.一個(gè)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從中任意摸取3個(gè)小球,每個(gè)小球被取出的可能性相等,則取出的3個(gè)小球中數(shù)字最大的為4的概率是__.16.已知函數(shù)f(x)=axlnx﹣bx(a,b∈R)在點(diǎn)(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知,.(1)解;(2)若,證明:.19.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.20.(12分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長(zhǎng)為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過(guò)橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式恒成立,求的最小值.21.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.22.(10分)已知函數(shù)的定義域?yàn)椋覞M足,當(dāng)時(shí),有,且.(1)求不等式的解集;(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!驹斀狻?,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B?!军c(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。2、A【解析】,故,故選A.3、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).4、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.5、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類(lèi)討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過(guò)程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過(guò)程得以?xún)?yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問(wèn)題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.6、C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項(xiàng)工作,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項(xiàng)工作,有種情況,此時(shí)有種情況,則有種不同的安排方法;故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.9、A【解析】
構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡(jiǎn)不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時(shí),,所以,所以.由得,所以,故不等式的解集為.故選:A【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.10、D【解析】
根據(jù)兩個(gè)圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項(xiàng)的真假.【詳解】在A中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的,所以是正確的;在C中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點(diǎn)睛】本題主要考查了命題的真假判定,以及統(tǒng)計(jì)圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識(shí)的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.11、A【解析】試題分析:因?yàn)榈恼归_(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.12、A【解析】
畫(huà)出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫(huà)出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過(guò)點(diǎn)A時(shí),此時(shí)直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【點(diǎn)睛】本題主要考查簡(jiǎn)單線性規(guī)劃求解目標(biāo)函數(shù)的最值問(wèn)題.其中解答中正確畫(huà)出不等式組表示的可行域,利用“一畫(huà)、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先推導(dǎo)出函數(shù)的周期為,可得出,代值計(jì)算,即可求出實(shí)數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱(chēng)性計(jì)算函數(shù)值,解題的關(guān)鍵就是結(jié)合函數(shù)的奇偶性與對(duì)稱(chēng)軸推導(dǎo)出函數(shù)的周期,考查推理能力與計(jì)算能力,屬于中等題.14、【解析】
利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線右焦點(diǎn)為,過(guò)右焦點(diǎn)且與軸垂直的直線與兩條漸近線分別交于兩點(diǎn),則,,由已知,,即,所以,離心率.故答案為:【點(diǎn)睛】本題考查求雙曲線的離心率,做此類(lèi)題的關(guān)鍵是建立的方程或不等式,是一道容易題.15、【解析】
由題,得滿足題目要求的情況有,①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選和②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類(lèi):①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選,一共有種情況;②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個(gè)小球,有種情況,所以取出的3個(gè)小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問(wèn)題,考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力.16、0【解析】
由題意,列方程組可求,即求.【詳解】∵在點(diǎn)處的切線方程為,,代入得①.又②.聯(lián)立①②解得:..故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)令可求得的值,令時(shí),由可得出,兩式相減可得的表達(dá)式,然后對(duì)是否滿足在時(shí)的表達(dá)式進(jìn)行檢驗(yàn),由此可得出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,對(duì)分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時(shí),;當(dāng)時(shí),由得,兩式相減得,.滿足.因此,數(shù)列的通項(xiàng)公式為;(2).①當(dāng)為奇數(shù)時(shí),;②當(dāng)為偶數(shù)時(shí),.綜上所述,.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,同時(shí)也考查了奇偶分組求和法,考查計(jì)算能力,屬于中等題.18、(1);(2)見(jiàn)解析.【解析】
(1)在不等式兩邊平方化簡(jiǎn)轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對(duì)值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對(duì)值三角不等式可得.因此,.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用絕對(duì)值三角不等式證明不等式,考查推理能力與運(yùn)算求解能力,屬于中等題.19、(1)(2)特征值為或.【解析】
(1)先設(shè)矩陣,根據(jù),按照運(yùn)算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項(xiàng)式等于,即可求出矩陣的特征值.【詳解】解:(1)設(shè)矩陣由題意,因?yàn)?所以,即所以,(2)矩陣的特征多項(xiàng)式,令,解得或,所以矩陣的特征值為1或.【點(diǎn)睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學(xué)生的劃歸與轉(zhuǎn)化能力和運(yùn)算求解能力.20、(1)(2)【解析】
(1)由已知條件列出關(guān)于和的方程,并計(jì)算出和的值,jike得到橢圓的方程.(2)設(shè)出點(diǎn)和點(diǎn)坐標(biāo),運(yùn)用點(diǎn)坐標(biāo)計(jì)算出,分類(lèi)討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當(dāng)直線垂直于軸時(shí),,且此時(shí),,當(dāng)直線不垂直于軸時(shí),設(shè)直線由,得.,.要使恒成立,只需,即最小值為【點(diǎn)睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過(guò)程中需要分類(lèi)討論直線的斜率存在和不存在
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度智慧城市建設(shè)項(xiàng)目招投標(biāo)合同管理與數(shù)據(jù)安全協(xié)議3篇
- 2024年度擔(dān)保業(yè)務(wù)創(chuàng)新與發(fā)展合作協(xié)議3篇
- 2024年度跨境電商擔(dān)保協(xié)議書(shū)簡(jiǎn)明版3篇
- 2024年度股權(quán)代持及股權(quán)回購(gòu)協(xié)議書(shū)3篇
- 2024年子女撫養(yǎng)費(fèi)分期支付及變更離婚協(xié)議書(shū)范本3篇
- 2024年城市綠化景觀種苗委托培育與養(yǎng)護(hù)服務(wù)協(xié)議3篇
- 2024外墻保溫材料低碳環(huán)保購(gòu)銷(xiāo)合同協(xié)議3篇
- 2024年度商業(yè)地產(chǎn)項(xiàng)目營(yíng)銷(xiāo)策劃顧問(wèn)服務(wù)合同范本6篇
- 2024年度股權(quán)投資協(xié)議
- 2024年度招投標(biāo)居間服務(wù)與招投標(biāo)評(píng)估體系合同范本3篇
- 2025年蛇年春聯(lián)帶橫批-蛇年對(duì)聯(lián)大全新春對(duì)聯(lián)集錦
- 海外資產(chǎn)系列(一):60年美國(guó)股市興衰簡(jiǎn)史
- 數(shù)控銑床(加工中心)編程與操作完整版課件
- 筏板基礎(chǔ)基礎(chǔ)施工方案模板
- 2013工程量清單計(jì)價(jià)規(guī)范計(jì)算規(guī)則匯總
- 食品安全法培訓(xùn)課件
- DB33_T 2263-2020縣級(jí)文化館總分館制管理服務(wù)規(guī)范(高清正版)
- 中建3局-施工工藝質(zhì)量管理標(biāo)準(zhǔn)化指導(dǎo)手冊(cè)土建部分下冊(cè)
- 雙狐地質(zhì)成圖系統(tǒng)使用手冊(cè)
- 國(guó)家開(kāi)放大學(xué)2021年計(jì)算機(jī)應(yīng)用基礎(chǔ)終結(jié)性考試試題附答案
- 聚丙烯腈碳纖維ppt課件
評(píng)論
0/150
提交評(píng)論