2025屆四川成都高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁
2025屆四川成都高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁
2025屆四川成都高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁
2025屆四川成都高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁
2025屆四川成都高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆四川成都高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集為,集合,則()A. B. C. D.2.已知雙曲線,過原點(diǎn)作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點(diǎn),以線段PQ為直徑的圓過右焦點(diǎn)F,則雙曲線離心率為A. B. C.2 D.3.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.4.函數(shù)的圖象大致為()A. B.C. D.5.歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計(jì)算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.6.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點(diǎn),且,,則異面直線與所成角的余弦值為()A. B. C. D.7.臺球是一項(xiàng)國際上廣泛流行的高雅室內(nèi)體育運(yùn)動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國地區(qū)的叫法)控制撞球點(diǎn)、球的旋轉(zhuǎn)等控制母球走位是擊球的一項(xiàng)重要技術(shù),一次臺球技術(shù)表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點(diǎn)E,F(xiàn)處各放一個目標(biāo)球,表演者先將母球放在點(diǎn)A處,通過擊打母球,使其依次撞擊點(diǎn)E,F(xiàn)處的目標(biāo)球,最后停在點(diǎn)C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm8.已知函數(shù),當(dāng)時,的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.9.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知拋物線:,直線與分別相交于點(diǎn),與的準(zhǔn)線相交于點(diǎn),若,則()A.3 B. C. D.11.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.12.已知,則()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,常數(shù)項(xiàng)為________.(用數(shù)字作答)14.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實(shí)數(shù)的取值范圍是_____.15.曲線y=e-5x+2在點(diǎn)(0,3)處的切線方程為________.16.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點(diǎn),求的值.18.(12分)如圖,橢圓的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,且,為等邊三角形,過點(diǎn)的直線與橢圓在軸右側(cè)的部分交于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求四邊形面積的取值范圍.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點(diǎn),的頂點(diǎn)也在曲線上運(yùn)動,求面積的最大值.20.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.21.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.22.(10分)已知函數(shù)的定義域?yàn)椋覞M足,當(dāng)時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

對于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.2、B【解析】

求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點(diǎn)坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡得,故,設(shè)焦點(diǎn)坐標(biāo)為,由于以為直徑的圓經(jīng)過點(diǎn),故,即,即,即,兩邊除以得,解得.故,故選B.【點(diǎn)睛】本小題主要考查直線和雙曲線的交點(diǎn),考查圓的直徑有關(guān)的幾何性質(zhì),考查運(yùn)算求解能力,屬于中檔題.3、B【解析】

因?yàn)?,所以,故選B.4、A【解析】

用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因?yàn)?所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因?yàn)?故排除,因?yàn)橛蓤D象知,排除.故選:A【點(diǎn)睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.5、B【解析】

初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.6、B【解析】

建立空間直角坐標(biāo)系,利用向量法計(jì)算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點(diǎn)為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點(diǎn)睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.7、D【解析】

過點(diǎn)做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來,根據(jù),列方程求出,進(jìn)而可得正方形的邊長.【詳解】過點(diǎn)做正方形邊的垂線,如圖,設(shè),則,,則,因?yàn)?,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點(diǎn)睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.8、C【解析】

求導(dǎo)分析函數(shù)在時的單調(diào)性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時,,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當(dāng)時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.9、B【解析】

根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點(diǎn)睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.10、C【解析】

根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點(diǎn)如圖,過A,M作準(zhǔn)線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點(diǎn)睛】本題考查求拋物線的焦點(diǎn)弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.11、D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.12、B【解析】

結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

的展開式的通項(xiàng)為,取計(jì)算得到答案.【詳解】的展開式的通項(xiàng)為:,取得到常數(shù)項(xiàng).故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.14、【解析】

根據(jù)分段函數(shù)的解析式畫出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫出的圖象如下:因?yàn)?且存在唯一的整數(shù)使得,故與在時無交點(diǎn),,得;又,過定點(diǎn)又由圖像可知,若存在唯一的整數(shù)使得時,所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時,恒成立.綜上所述,存在唯一的整數(shù)使得,此時故答案為:【點(diǎn)睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問題,需要根據(jù)題意分別分析定點(diǎn)右邊的整數(shù)點(diǎn)中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時的不等式求的范圍.屬于難題.15、.【解析】

先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【詳解】因?yàn)閥′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點(diǎn)睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是16、【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點(diǎn)睛】本題考查古典概型的概率的計(jì)算,考查學(xué)生分析問題的能力,難度容易.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達(dá)定理,,即可求得結(jié)果.【詳解】(1)因?yàn)椋?,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點(diǎn)睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,難度一般.18、(1);(2).【解析】

(1)根據(jù)坐標(biāo)和為等邊三角形可得,進(jìn)而得到橢圓方程;(2)①當(dāng)直線斜率不存在時,易求坐標(biāo),從而得到所求面積;②當(dāng)直線的斜率存在時,設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,并確定的取值范圍;利用,代入韋達(dá)定理的結(jié)論可求得關(guān)于的表達(dá)式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【詳解】(1),,為等邊三角形,,橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)四邊形的面積為.①當(dāng)直線的斜率不存在時,可得,,.②當(dāng)直線的斜率存在時,設(shè)直線的方程為,設(shè),,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【點(diǎn)睛】本題考查直線與橢圓的綜合應(yīng)用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關(guān)鍵是能夠?qū)⑺竺娣e表示為關(guān)于某一變量的函數(shù),將問題轉(zhuǎn)化為函數(shù)值域的求解問題.19、(1):,:;(2)【解析】

(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程互化的公式即可得曲線的直角坐標(biāo)方程;(2)由即可得的底,由點(diǎn)到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標(biāo)方程為;(2)曲線即,圓心到直線的距離,所以,又點(diǎn)到直線的距離的最大值為,所以面積的最大值為.【點(diǎn)睛】本題考查了參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程的互化,考查了直線與圓的位置關(guān)系,屬于中檔題.20、(1);(2)①82,②分布列見解析,【解析】

(1)從20人中任取3人共有種結(jié)果,恰有1人成績“優(yōu)秀”共有種結(jié)果,利用古典概型的概率計(jì)算公式計(jì)算即可;(2)①平均數(shù)的估計(jì)值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項(xiàng)分布,不是超幾何分布,利用二項(xiàng)分布的分布列及期望公式求解即可.【詳解】(1)設(shè)從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02①,估計(jì)所有員工的平均分為82②的可能取值為0、1、2、3,隨機(jī)選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數(shù)學(xué)期望.【點(diǎn)睛】本題考查古典概型的概率計(jì)算以及二項(xiàng)分布期望的問題,涉及到頻率分布直方圖、平均數(shù)的估計(jì)值等知識,是一道容易題.21、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計(jì)算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計(jì)算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點(diǎn)M(2,0),計(jì)算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(m∈Z).由于圓與直線4x+3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論