武漢科技大學(xué)《文字與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
武漢科技大學(xué)《文字與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
武漢科技大學(xué)《文字與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
武漢科技大學(xué)《文字與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
武漢科技大學(xué)《文字與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁武漢科技大學(xué)《文字與標(biāo)志設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是2、在計算機(jī)視覺的場景理解任務(wù)中,需要對整個圖像場景進(jìn)行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場景理解?()A.基于對象檢測和分類的方法B.基于語義分割和圖模型的方法C.基于深度學(xué)習(xí)的場景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法3、在計算機(jī)視覺的醫(yī)學(xué)影像分析中,例如對腫瘤的檢測和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進(jìn)行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學(xué)操作和閾值分割的方法4、在計算機(jī)視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓(xùn)練一個模型來準(zhǔn)確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如支持向量機(jī)(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)5、在計算機(jī)視覺的三維重建任務(wù)中,需要從多視角的圖像中恢復(fù)物體的三維形狀。假設(shè)我們有一組從不同角度拍攝的建筑物圖像,以下哪種方法常用于從這些圖像中重建建筑物的三維模型?()A.立體匹配方法B.結(jié)構(gòu)光方法C.運(yùn)動恢復(fù)結(jié)構(gòu)(SFM)D.基于投影的方法6、在進(jìn)行圖像增強(qiáng)時,我們常常需要在保持圖像細(xì)節(jié)的同時改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強(qiáng)方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波7、在一個基于計算機(jī)視覺的智能交通監(jiān)控系統(tǒng)中,需要對車輛的類型、速度和行駛軌跡進(jìn)行分析。以下哪種技術(shù)在車輛分析方面可能發(fā)揮關(guān)鍵作用?()A.目標(biāo)檢測和跟蹤B.車牌識別C.軌跡預(yù)測D.以上都是8、計算機(jī)視覺中的視頻分析需要對連續(xù)的圖像幀進(jìn)行處理和理解。假設(shè)要分析一段監(jiān)控視頻中的人群行為,包括行走方向、聚集和分散等。以下哪種視頻分析技術(shù)在處理這種復(fù)雜的群體行為時最為有效?()A.幀間差分法B.背景減除法C.光流法結(jié)合軌跡分析D.深度學(xué)習(xí)的行為識別模型9、計算機(jī)視覺中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對一個古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項是錯誤的?()A.可以通過立體視覺的方法,從不同角度拍攝的圖像中計算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實物體的形狀完全一致10、計算機(jī)視覺中的醫(yī)學(xué)圖像分析中,假設(shè)要對腫瘤進(jìn)行檢測和分割。以下關(guān)于醫(yī)學(xué)圖像分析方法的描述,正確的是:()A.由于醫(yī)學(xué)圖像的特殊性,傳統(tǒng)的計算機(jī)視覺方法無法應(yīng)用于醫(yī)學(xué)圖像分析B.深度學(xué)習(xí)方法在醫(yī)學(xué)圖像分析中能夠準(zhǔn)確檢測腫瘤,但對小腫瘤容易漏檢C.多模態(tài)醫(yī)學(xué)圖像融合可以提供更豐富的信息,但融合算法復(fù)雜,效果不穩(wěn)定D.醫(yī)學(xué)圖像分析的結(jié)果不需要經(jīng)過醫(yī)生的審核和確認(rèn),可以直接用于診斷11、在計算機(jī)視覺的圖像分類任務(wù)中,假設(shè)數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種方法可以緩解這種不平衡對分類模型的影響?()A.對少數(shù)類進(jìn)行過采樣或?qū)Χ鄶?shù)類進(jìn)行欠采樣B.只使用多數(shù)類的樣本進(jìn)行訓(xùn)練C.不考慮類別不平衡,直接訓(xùn)練模型D.隨機(jī)選擇樣本進(jìn)行訓(xùn)練12、計算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,同時保留圖像的細(xì)節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴(yán)重噪聲污染的醫(yī)學(xué)圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時,最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法13、在計算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域精確地分割出來,以便醫(yī)生進(jìn)行診斷和治療。這張醫(yī)學(xué)圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時可能更具優(yōu)勢?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進(jìn)行分割B.基于區(qū)域生長的分割方法,從種子點開始逐漸擴(kuò)展區(qū)域C.基于深度學(xué)習(xí)的語義分割算法,如U-NetD.隨機(jī)分割圖像,然后根據(jù)后續(xù)分析進(jìn)行調(diào)整14、對于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對圖像進(jìn)行簡單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測圖像的語義15、當(dāng)進(jìn)行圖像的風(fēng)格遷移任務(wù)時,假設(shè)要將一張照片的風(fēng)格轉(zhuǎn)換為著名繪畫的風(fēng)格,同時保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實現(xiàn)這一目標(biāo)時可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移算法,如Gatys等人提出的方法B.對圖像進(jìn)行簡單的色彩變換和濾鏡處理C.隨機(jī)改變圖像的像素值來模擬風(fēng)格遷移D.只對圖像的邊緣進(jìn)行處理,忽略內(nèi)部區(qū)域二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明計算機(jī)視覺在冰川監(jiān)測中的作用。2、(本題5分)解釋計算機(jī)視覺在煙草行業(yè)中的質(zhì)量檢測。3、(本題5分)描述計算機(jī)視覺在虛擬現(xiàn)實中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)通過圖像分類算法,對不同風(fēng)格的室內(nèi)裝修圖像進(jìn)行分類。2、(本題5分)開發(fā)一個可以識別不同種類真菌的計算機(jī)視覺應(yīng)用。3、(本題5分)設(shè)計一個基于計算機(jī)視覺的視網(wǎng)膜識別系統(tǒng)。4、(本題5分)利用圖像增強(qiáng)技術(shù),提升霧霾天氣下拍攝圖像的清晰度。5、(本題5分)使用目標(biāo)跟蹤算法,對馬拉松比賽中的運(yùn)動員進(jìn)行實時排名和速度估算。四、分析題(本大題共3個小題,共30分)1、(本題10分)以一款游戲的更新公告頁面設(shè)計為例,分析其如何運(yùn)用視覺語言和文字內(nèi)容傳達(dá)游戲更新的內(nèi)容和亮點,吸引玩家關(guān)注和參與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論