版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山西省孝義市九校高三沖刺模擬數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù),滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.2.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.293.已知函數(shù),若曲線(xiàn)上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.4.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是()A. B.C. D.5.已知拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)與軸的交點(diǎn)為,點(diǎn)為拋物線(xiàn)上任意一點(diǎn)的平分線(xiàn)與軸交于,則的最大值為A. B. C. D.6.命題“”的否定為()A. B.C. D.7.若雙曲線(xiàn)的一條漸近線(xiàn)與圓至多有一個(gè)交點(diǎn),則雙曲線(xiàn)的離心率的取值范圍是()A. B. C. D.8.中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線(xiàn)的兩條漸近線(xiàn)與圓都相切,則雙曲線(xiàn)的離心率是()A.2或 B.2或 C.或 D.或9.函數(shù)(其中是自然對(duì)數(shù)的底數(shù))的大致圖像為()A. B. C. D.10.集合,,則=()A. B.C. D.11.已知平面向量,,滿(mǎn)足:,,則的最小值為()A.5 B.6 C.7 D.812.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線(xiàn)的焦點(diǎn)為,直線(xiàn)與拋物線(xiàn)相切于點(diǎn),是上一點(diǎn)(不與重合),若以線(xiàn)段為直徑的圓恰好經(jīng)過(guò),則點(diǎn)到拋物線(xiàn)頂點(diǎn)的距離的最小值是__________.14.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對(duì)應(yīng)的向量分別是,,則_______.15.已知過(guò)點(diǎn)的直線(xiàn)與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線(xiàn)段上,過(guò)作軸的平行線(xiàn)交函數(shù)的圖象于點(diǎn),當(dāng)∥軸,點(diǎn)的橫坐標(biāo)是16.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說(shuō)明理由.18.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對(duì)及,不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線(xiàn)與橢圓交于兩點(diǎn),線(xiàn)段的中點(diǎn)為為坐標(biāo)原點(diǎn).(1)證明:點(diǎn)在軸的右側(cè);(2)設(shè)線(xiàn)段的垂直平分線(xiàn)與軸、軸分別相交于點(diǎn).若與的面積相等,求直線(xiàn)的斜率20.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.21.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.22.(10分)已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.(1)討論的單調(diào)性(2)求實(shí)數(shù)和a的值(3)證明
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.2、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.3、D【解析】
根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類(lèi),利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無(wú)解;若,顯然不滿(mǎn)足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)椋?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.4、D【解析】
由已知可將問(wèn)題轉(zhuǎn)化為:y=f(x)的圖象和直線(xiàn)y=kx-有4個(gè)交點(diǎn),作出圖象,由圖可得:點(diǎn)(1,0)必須在直線(xiàn)y=kx-的下方,即可求得:k>;再求得直線(xiàn)y=kx-和y=lnx相切時(shí),k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則y=f(x)的圖象和直線(xiàn)y=kx-有4個(gè)交點(diǎn).作出函數(shù)y=f(x)的圖象,如圖,故點(diǎn)(1,0)在直線(xiàn)y=kx-的下方.∴k×1->0,解得k>.當(dāng)直線(xiàn)y=kx-和y=lnx相切時(shí),設(shè)切點(diǎn)橫坐標(biāo)為m,則k==,∴m=.此時(shí),k==,f(x)的圖象和直線(xiàn)y=kx-有3個(gè)交點(diǎn),不滿(mǎn)足條件,故所求k的取值范圍是,故選D..【點(diǎn)睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計(jì)算能力、觀察能力,屬于難題.5、A【解析】
求出拋物線(xiàn)的焦點(diǎn)坐標(biāo),利用拋物線(xiàn)的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點(diǎn)F(1,0),準(zhǔn)線(xiàn)方程為x=?1,
過(guò)點(diǎn)P作PM垂直于準(zhǔn)線(xiàn),M為垂足,
由拋物線(xiàn)的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線(xiàn)與軸交于
根據(jù)角平分線(xiàn)定理可得,,當(dāng)時(shí),,當(dāng)時(shí),,,綜上:.故選:A.【點(diǎn)睛】本題主要考查拋物線(xiàn)的定義、性質(zhì)的簡(jiǎn)單應(yīng)用,直線(xiàn)的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力,屬于中檔題.6、C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點(diǎn)睛】本題考查全稱(chēng)命題的否定,屬于基礎(chǔ)題.7、C【解析】
求得雙曲線(xiàn)的漸近線(xiàn)方程,可得圓心到漸近線(xiàn)的距離,由點(diǎn)到直線(xiàn)的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線(xiàn)的一條漸近線(xiàn)為,即,由題意知,直線(xiàn)與圓相切或相離,則,解得,因此,雙曲線(xiàn)的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線(xiàn)的離心率的范圍,注意運(yùn)用圓心到漸近線(xiàn)的距離不小于半徑,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.8、A【解析】
根據(jù)題意,由圓的切線(xiàn)求得雙曲線(xiàn)的漸近線(xiàn)的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線(xiàn)的離心率.【詳解】設(shè)雙曲線(xiàn)C的漸近線(xiàn)方程為y=kx,是圓的切線(xiàn)得:,得雙曲線(xiàn)的一條漸近線(xiàn)的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線(xiàn)的離心率2或.
故選:A.【點(diǎn)睛】本小題主要考查直線(xiàn)與圓的位置關(guān)系、雙曲線(xiàn)的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線(xiàn)求得直線(xiàn)的方程,再由雙曲線(xiàn)中漸近線(xiàn)的方程的關(guān)系建立等式,從而解出雙曲線(xiàn)的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.9、D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故選D.10、C【解析】
先化簡(jiǎn)集合A,B,結(jié)合并集計(jì)算方法,求解,即可.【詳解】解得集合,所以,故選C.【點(diǎn)睛】本道題考查了集合的運(yùn)算,考查了一元二次不等式解法,關(guān)鍵化簡(jiǎn)集合A,B,難度較?。?1、B【解析】
建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B【點(diǎn)睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.12、C【解析】
利用對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點(diǎn)睛】本題考查對(duì)數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)拋物線(xiàn),不妨設(shè),取,通過(guò)求導(dǎo)得,,再根據(jù)以線(xiàn)段為直徑的圓恰好經(jīng)過(guò),則,得到,兩式聯(lián)立,求得點(diǎn)N的軌跡,再求解最值.【詳解】因?yàn)閽佄锞€(xiàn),不妨設(shè),取,所以,即,所以,因?yàn)橐跃€(xiàn)段為直徑的圓恰好經(jīng)過(guò),所以,所以,所以,由,解得,所以點(diǎn)在直線(xiàn)上,所以當(dāng)時(shí),最小,最小值為.故答案為:2【點(diǎn)睛】本題主要考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系直線(xiàn)的交軌問(wèn)題,還考查了運(yùn)算求解的能力,屬于中檔題.14、【解析】試題分析:由坐標(biāo)系可知考點(diǎn):復(fù)數(shù)運(yùn)算15、【解析】
通過(guò)設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過(guò)∥軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于∥軸,故,代入,可得,即,由于在線(xiàn)段上,故,即,解得.16、1【解析】
根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)不存在;詳見(jiàn)解析【解析】
(1)將函數(shù)去絕對(duì)值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進(jìn)而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號(hào),,不成立;或,異號(hào),,不成立;故不存在實(shí)數(shù),,使得,.【點(diǎn)睛】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.18、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當(dāng)時(shí),由,解得;當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得.所以不等式的解集為.(Ⅱ)因?yàn)?,所?由題意知對(duì),,即,因?yàn)椋?,解?【點(diǎn)睛】⑴絕對(duì)值不等式解法的基本思路是:去掉絕對(duì)值號(hào),把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對(duì)值定義法;②平方法;③零點(diǎn)區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過(guò)恒等變形使參數(shù)與主元分離于不等式兩端,從而問(wèn)題轉(zhuǎn)化為求主元函數(shù)的最值,進(jìn)而求出參數(shù)范圍.這種方法本質(zhì)也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.19、(1)證明見(jiàn)解析(2)【解析】
(1)設(shè)出直線(xiàn)的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點(diǎn)的橫坐標(biāo)即可證出;(2)根據(jù)線(xiàn)段的垂直平分線(xiàn)求出點(diǎn)的坐標(biāo),即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線(xiàn)的斜率.【詳解】(1)由題意,得,直線(xiàn)()設(shè),,聯(lián)立消去,得,顯然,,則點(diǎn)的橫坐標(biāo),因?yàn)?,所以點(diǎn)在軸的右側(cè).(2)由(1)得點(diǎn)的縱坐標(biāo).即.所以線(xiàn)段的垂直平分線(xiàn)方程為:.令,得;令,得.所以的面積,的面積.因?yàn)榕c的面積相等,所以,解得.所以當(dāng)與的面積相等時(shí),直線(xiàn)的斜率.【點(diǎn)睛】本題主要考查直線(xiàn)與橢圓的位置關(guān)系的應(yīng)用、根與系數(shù)的關(guān)系應(yīng)用,以及三角形的面積的計(jì)算,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.20、(Ⅰ);(Ⅱ)?!窘馕觥?/p>
(Ⅰ)分類(lèi)討論,去掉絕對(duì)值,求得原絕對(duì)值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當(dāng)時(shí),原不等式可化為,此時(shí)不成立;當(dāng)時(shí),原不等式可化為,解得,即;當(dāng)時(shí),原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.當(dāng)時(shí),,所以.所以,解得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見(jiàn)的絕對(duì)值不等式的解法,法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類(lèi)討論的思想;法三:通過(guò)構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.21、(1)2;(2)【解析】分析:(1)將轉(zhuǎn)化為分段函數(shù),求函數(shù)的最小值(2)分離參數(shù),利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,即.(Ⅱ)因?yàn)楹愠闪?,所以恒成立,?dāng)且僅當(dāng)時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.點(diǎn)睛:本題主要考查含兩個(gè)絕對(duì)值的函數(shù)的最值和不等式的應(yīng)用,第二問(wèn)恒成立問(wèn)題分離參數(shù),利用基本不等式求解很關(guān)鍵,屬于中檔題.22、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見(jiàn)解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項(xiàng)相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域?yàn)?,且,令,則有,由,可得,可知當(dāng)x變化時(shí),的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域?yàn)椋?,由已知得,即,①由可得,,②?lián)立①②,消去a,可得,③令
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024餐廳桌椅采購(gòu)合同范本
- Unit 1 Good morning(同步練習(xí))-2021-2022學(xué)年二年級(jí)英語(yǔ)上冊(cè)-滬教牛津版(深圳用)(含答案)
- 2024葵花出售合同范本
- 2024版預(yù)算單位公務(wù)卡代理運(yùn)營(yíng)協(xié)議3篇
- 2024年三季度報(bào)北京地區(qū)A股應(yīng)交稅費(fèi)排名前十大上市公司
- 2024旅游業(yè)務(wù)合作與股權(quán)轉(zhuǎn)讓合同
- 2024飼料運(yùn)輸安全責(zé)任保險(xiǎn)合同3篇
- 2024物流標(biāo)準(zhǔn)化、質(zhì)量認(rèn)證合同
- 2024版細(xì)化第三方交易協(xié)議樣式版B版
- 2024版食堂服務(wù)采購(gòu)合同書(shū)
- 2024江蘇泗陽(yáng)縣交通產(chǎn)業(yè)集團(tuán)招聘第一線(xiàn)操作人員招聘39人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- GB 19272-2024室外健身器材的安全通用要求
- 北師大版五年級(jí)數(shù)學(xué)下冊(cè)第3單元第3課時(shí)分?jǐn)?shù)乘法(三)課件
- 2025新外研社版英語(yǔ)七年級(jí)下單詞默寫(xiě)表
- 2024年演出經(jīng)紀(jì)人資格《思想政治與法律基礎(chǔ)》考前必刷必練題庫(kù)500題(含真題、必會(huì)題)
- 麻醉與舒適醫(yī)療
- 全國(guó)林草行業(yè)森林消防員技能競(jìng)賽理論知識(shí)考試題及答案
- 《中小學(xué)校園食品安全和膳食經(jīng)費(fèi)管理工作指引》專(zhuān)題培訓(xùn)
- 2022年山東省公務(wù)員錄用考試《申論》真題(A類(lèi))及答案解析
- 2024年治安保衛(wèi)部規(guī)章制度(2篇)
- 2024年保密知識(shí)測(cè)試試題附答案(綜合卷)
評(píng)論
0/150
提交評(píng)論