上海交大附屬中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
上海交大附屬中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
上海交大附屬中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
上海交大附屬中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
上海交大附屬中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

上海交大附屬中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.2.函數(shù)的圖象大致是()A. B.C. D.3.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④4.《九章算術(shù)》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分?jǐn)?shù)進(jìn)行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17645.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.6.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.7.若函數(shù)的圖象上兩點,關(guān)于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.8.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.10.在平面直角坐標(biāo)系中,已知角的頂點與原點重合,始邊與軸的非負(fù)半軸重合,終邊落在直線上,則()A. B. C. D.11.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.2020二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最大值與最小正周期相同,則在上的單調(diào)遞增區(qū)間為______.14.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.15.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.16.已知a,b均為正數(shù),且,的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.18.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應(yīng)還4900元,最后一個還款月應(yīng)還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟(jì)利益的角度來考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.19.(12分)的內(nèi)角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.20.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.21.(12分)設(shè)拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.22.(10分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當(dāng)且僅當(dāng)時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.2、C【解析】

根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當(dāng)時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.3、D【解析】

根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當(dāng),則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.4、A【解析】

根據(jù)題目所給的步驟進(jìn)行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.5、B【解析】

利用復(fù)數(shù)乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復(fù)數(shù)的乘法運算,考查復(fù)數(shù)模的計算,屬于基礎(chǔ)題.6、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.7、D【解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個公共點,可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點,關(guān)于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當(dāng)時,;當(dāng)時,,故時取得極大值,也即為最大值,當(dāng)時,;當(dāng)時,,所以滿足條件.故選:D【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.8、B【解析】

由,可得,解出即可判斷出結(jié)論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.9、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當(dāng)時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當(dāng)時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.10、C【解析】

利用誘導(dǎo)公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.11、D【解析】

,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當(dāng)時,不妨取,,故時,不成立,當(dāng)時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.12、C【解析】

首先,根據(jù)二倍角公式和輔助角公式化簡函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識,掌握輔助角公式化簡函數(shù)解析式是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用三角函數(shù)的輔助角公式進(jìn)行化簡,求出函數(shù)的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】∵,則函數(shù)的最大值為2,周期,的最大值與最小正周期相同,,得,則,當(dāng)時,,則當(dāng)時,得,即函數(shù)在,上的單調(diào)遞增區(qū)間為,故答案為:.【點睛】本題考查三角函數(shù)的性質(zhì)、單調(diào)區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關(guān)鍵,同時要注意單調(diào)區(qū)間為定義域的一個子區(qū)間.14、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.15、【解析】

分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.16、【解析】

本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當(dāng)且僅當(dāng),即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題意可知:由,求得點坐標(biāo),即可求得橢圓的方程;(Ⅱ)設(shè)直線,代入橢圓方程,由韋達(dá)定理,由,由為銳角,則,由向量數(shù)量積的坐標(biāo)公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設(shè)由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設(shè)方程為設(shè)由得由直線與橢圓有兩個不同的交點則即得又為銳角則即②由①②得或故直線斜率可取值范圍是【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運算,韋達(dá)定理,考查計算能力,屬于中檔題.18、(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個等差數(shù)列,記為,表示數(shù)列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設(shè)小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經(jīng)濟(jì)利益的角度來考慮,小張應(yīng)選擇等額本金還款方式.【點睛】本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應(yīng)用,數(shù)列在實際問題中的應(yīng)用,理解題意是解決問題的關(guān)鍵,屬于中檔題.19、(1)(2)【解析】

(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.20、(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時,有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論