




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖北省華中師范大學東湖開發(fā)區(qū)第一附屬中學高三第二次聯(lián)考數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.2.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.33.若復數(shù)z滿足,則()A. B. C. D.4.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.5.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值6.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.7.我國古代有著輝煌的數(shù)學研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學的重要文獻.這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.8.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.9.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元10.在三角形中,,,求()A. B. C. D.11.已知復數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復數(shù)在復平面內(nèi)對應(yīng)的點位于第三象限C.的共軛復數(shù) D.12.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則________.14.在邊長為2的正三角形中,,則的取值范圍為______.15.直線xsinα+y+2=0的傾斜角的取值范圍是________________.16.已知,滿足不等式組,則的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領(lǐng)域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關(guān)?(2)用樣本估計總體,若從騰訊服務(wù)的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82818.(12分)已知函數(shù),,使得對任意兩個不等的正實數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.19.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.20.(12分)設(shè)等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計算,,;(2)設(shè),,試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.21.(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.22.(10分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎(chǔ)題.3、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數(shù)的運算和模的計算,意在考查學生對這些知識的理解掌握水平.4、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.5、D【解析】
A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).6、B【解析】
奇函數(shù)滿足定義域關(guān)于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關(guān)于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關(guān)于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點對稱,屬于簡單題目.7、D【解析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.8、A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.9、D【解析】
設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎(chǔ)知識解決實際問題,屬于基礎(chǔ)題.10、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計算能力,屬于中等題.11、D【解析】
利用的周期性先將復數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內(nèi)對應(yīng)的點為,在第二象限,B錯誤;的共軛復數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復數(shù)的四則運算,涉及到復數(shù)的虛部、共軛復數(shù)、復數(shù)的幾何意義、復數(shù)的模等知識,是一道基礎(chǔ)題.12、C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)垂直向量的坐標表示可得出關(guān)于實數(shù)的等式,即可求得實數(shù)的值.【詳解】,且,則,解得.故答案為:.【點睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標表示,考查計算能力,屬于基礎(chǔ)題.14、【解析】
建立直角坐標系,依題意可求得,而,,,故可得,且,由此構(gòu)造函數(shù),,利用二次函數(shù)的性質(zhì)即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標系,則,,,設(shè),,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設(shè),,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設(shè)元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題.15、【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:16、【解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】
(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨立性檢驗得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為,知服從二項分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設(shè)實際付款元,,則的取值為1200,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以,有99%的把握認為“手機支付族”與“性別”有關(guān);(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設(shè)實際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算【點睛】本題考查獨立性檢驗,二項分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.18、(1);(2)證明見解析.【解析】
(1)根據(jù)題意,在上單調(diào)遞減,求導得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對任意兩個不等的正實數(shù),都有恒成立.則在上單調(diào)遞減,因為,當時,在內(nèi)單調(diào)遞減.,當時,由,有,此時,當時,單調(diào)遞減,當時,單調(diào)遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計算能力.19、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復合函數(shù)求導法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當,.,當,,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導數(shù)研究函數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復合函數(shù)求導,函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.20、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設(shè)集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關(guān)于7的余數(shù)相同,不妨設(shè)為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設(shè)不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設(shè)該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數(shù),設(shè),則,且,,,,所以,當,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CGTA 05-2023稻谷加工鎘風險預警技術(shù)規(guī)范
- T/CEMIA 018-2019光伏多晶硅用熔融石英陶瓷坩堝
- T/CEMIA 008-2018光纖預制棒用四氯化鍺
- T/CECS 10219-2022二次供水一體化智慧泵房
- T/CECS 10178-2022燃氣用埋地聚乙烯管材、管件認證要求
- T/CECS 10167-2021混凝土緩凝劑
- T/CECS 10164-2021建筑隔墻用工業(yè)副產(chǎn)石膏條板
- T/CECS 10140-2021超低能耗建筑用門窗認證通用技術(shù)要求
- T/CECS 10014-2019建筑給水用納米抗菌不銹鋼塑料復合管材與管件
- T/CCSAS 042-2023在役常壓儲罐檢驗與適用性評價技術(shù)規(guī)范
- 2025屆廣東省深圳實驗學校高中園與惠東高級中學高三下學期5月適應(yīng)性聯(lián)考(三模)物理試卷
- 2025年蘇教版科學小學五年級下冊期末檢測題附答案(二)
- 中國鐵路濟南局集團有限公司招聘普通高??荚囌骖}2024
- 成都設(shè)計咨詢集團有限公司2025年社會公開招聘(19人)筆試參考題庫附帶答案詳解
- 2025年度會計人員繼續(xù)教育會計法律法規(guī)答題活動測試100題答案
- 2024年江西省高考化學試卷(真題+答案)
- 建筑史智慧樹知到期末考試答案2024年
- 基于MATLAB仿真的烤箱的溫度控制分析
- 學校食堂食品安全應(yīng)急預案新
- 淺談小學語文板書設(shè)計的幾種實用形式
- 冷凍式干燥機用戶手冊(2018.07版)(說明書)
評論
0/150
提交評論