2025屆湖北省孝感市重點中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2025屆湖北省孝感市重點中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2025屆湖北省孝感市重點中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2025屆湖北省孝感市重點中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2025屆湖北省孝感市重點中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖北省孝感市重點中學(xué)高考仿真模擬數(shù)學(xué)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.962.若集合,,則A. B. C. D.3.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.4.設(shè)為非零實數(shù),且,則()A. B. C. D.5.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.26.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.7.已知集合,集合,則等于()A. B.C. D.8.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個9.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.10.已知向量,,若,則()A. B. C.-8 D.811.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是12.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.若x,y均為正數(shù),且,則的最小值為________.14.實數(shù)滿足,則的最大值為_____.15.已知兩個單位向量滿足,則向量與的夾角為_____________.16.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.18.(12分)已知數(shù)列的各項都為正數(shù),,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),其中表示不超過x的最大整數(shù),如,,求數(shù)列的前2020項和.19.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.20.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍.21.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.22.(10分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場比賽時,共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計數(shù)原理、排列數(shù)與組合數(shù)公式等知識,屬于基礎(chǔ)題.2、C【解析】

解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.3、D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.4、C【解析】

取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運用.5、B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.6、A【解析】

先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.7、B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎(chǔ)題目.8、B【解析】

根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當(dāng)集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.9、C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.10、B【解析】

先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎(chǔ)題.11、B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.12、D【解析】

根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

由基本不等式可得,則,即可解得.【詳解】方法一:,當(dāng)且僅當(dāng)時取等.方法二:因為,所以,所以,當(dāng)且僅當(dāng)時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應(yīng)用,考查學(xué)生對基本不等式的靈活使用,難度較易.14、.【解析】

畫出可行域,解出可行域的頂點坐標,代入目標函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當(dāng)直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數(shù)的最優(yōu)解問題.線性目標函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數(shù)求出相應(yīng)的數(shù)值,從而確定目標函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.15、【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的難點有兩個,其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.18、(Ⅰ);(Ⅱ)4953【解析】

(Ⅰ)遞推公式變形為,由數(shù)列是正項數(shù)列,得到,根據(jù)數(shù)列是等比數(shù)列求通項公式;(Ⅱ),根據(jù)新定義和對數(shù)的運算分類討論數(shù)列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數(shù)列的各項都為正數(shù),∴,即.∴數(shù)列是以2為首項,2為公比的等比數(shù)列,∴.(Ⅱ)∵,∴,.∴數(shù)列的前2020項的和為.【點睛】本題考查根據(jù)數(shù)列的遞推公式求通項公式和數(shù)列的前項和,意在考查轉(zhuǎn)化與化歸的思想,計算能力,屬于中檔題型.19、(1)見解析;(2).【解析】

(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因為平面,平面,所以平面;(2)在圖2中,過點作,垂足為,連接,,因為,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點在底面上的投影必落在直線上;記為點在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因為,所以,因此,,故;因為,所以,因此,故,所以.即直線與平面所成角的正弦值為.【點睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于??碱}型.20、(1)(2)【解析】

利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當(dāng)時,不等式即為,可得或或,解得或或,則原不等式的解集為若對任意、都有,即為,由,當(dāng)取得等號,則,由,可得,則的取值范圍是【點睛】本題考查含有兩個絕對值符號的不等式解法及利用三角不等式解恒成立問題.(1)含有兩個絕對值符號的不等式常用解法可用零點分區(qū)間法去掉絕對值符號,將其轉(zhuǎn)化為與之等價的不含絕對值符號的不等式(組)求解(2)利用三角不等式把不等式恒成立問題轉(zhuǎn)化為函數(shù)最值問題.21、(1)見解析(2)【解析】

(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論