黑龍江省佳木斯中學2025屆高三下學期第六次檢測數(shù)學試卷含解析_第1頁
黑龍江省佳木斯中學2025屆高三下學期第六次檢測數(shù)學試卷含解析_第2頁
黑龍江省佳木斯中學2025屆高三下學期第六次檢測數(shù)學試卷含解析_第3頁
黑龍江省佳木斯中學2025屆高三下學期第六次檢測數(shù)學試卷含解析_第4頁
黑龍江省佳木斯中學2025屆高三下學期第六次檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省佳木斯中學2025屆高三下學期第六次檢測數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.2.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.3.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數(shù)是()A.3 B.4 C.5 D.64.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或55.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種6.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.07.趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.8.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.9.已知復數(shù),,則()A. B. C. D.10.已知集合,集合,則().A. B.C. D.11.空氣質量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個月的空氣質量越來越好D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好12.已知函數(shù),若,,,則a,b,c的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.假設10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.14.設函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.15.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為___________.16.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則容器體積的最小值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關系,請用相關系數(shù)加以說明;(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產(chǎn)量為1.98萬件時,產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):,,,,.②參考公式:相關系數(shù),,.18.(12分)等差數(shù)列的前項和為,已知,.(Ⅰ)求數(shù)列的通項公式及前項和為;(Ⅱ)設為數(shù)列的前項的和,求證:.19.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數(shù)根,且,證明:.20.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.21.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.22.(10分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.2、A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.3、B【解析】

通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.4、B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎題.5、B【解析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數(shù).【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎題.6、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結論之間的關系去尋找函數(shù)的解析式要滿足的關系.7、D【解析】

設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題.8、C【解析】

設射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.9、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的??紗栴},屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.10、A【解析】

算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.11、C【解析】

結合題意,根據(jù)題目中的天的指數(shù)值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數(shù)值中有個低于,個高于,其中第個接近,第個高于,所以中位數(shù)略高于,故正確.對于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對于,由圖可知該市月的前天的空氣質量越來越好,從第天到第天空氣質量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質量比中旬的空氣質量好,故正確.故選:【點睛】本題考查了對折線圖數(shù)據(jù)的分析,讀懂題意是解題關鍵,并能運用所學知識對命題進行判斷,本題較為基礎.12、D【解析】

根據(jù)題意,求出函數(shù)的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調性的關系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點睛】本題考查函數(shù)的導數(shù)與函數(shù)單調性的關系,涉及函數(shù)單調性的性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.14、【解析】試題分析:由題意得函數(shù)在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調性15、【解析】

求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質以及拋物線的簡單性質的應用,是基本知識的考查,屬于基礎題.16、【解析】

一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)①②3.386(萬元)【解析】

(1)利用代入數(shù)值,求出后即可得解;(2)①計算出、后,利用求出后即可得解;②把代入線性回歸方程,計算即可得解.【詳解】(1)由已知條件得,,∴,說明與正相關,且相關性很強.(2)①由已知求得,,所以,所求回歸直線方程為.②當時,(萬元),此時產(chǎn)品的總成本約為3.386萬元.【點睛】本題考查了相關系數(shù)的應用以及線性回歸方程的求解和應用,考查了計算能力,屬于中檔題.18、(Ⅰ),(Ⅱ)見解析【解析】

(Ⅰ)根據(jù)等差數(shù)列公式直接計算得到答案.(Ⅱ),根據(jù)裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數(shù)列的基本量的計算,裂項求和,意在考查學生對于數(shù)列公式方法的靈活運用.19、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】

(Ⅰ)根據(jù)導數(shù)的幾何意義求解即可.(Ⅱ)求導分析函數(shù)的單調性,并構造函數(shù)根據(jù)單調性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結論可知,在上恒成立,再分別設的解為、.再根據(jù)不等式的性質證明即可.【詳解】(Ⅰ)由題,故.且.故在點處的切線方程為.(Ⅱ)設恒成立,故.設函數(shù)則,故在上單調遞減且,又在上單調遞增.又,即且,故只能在處取得最小值,當時,此時,且在上,單調遞減.在上,單調遞增.故,滿足題意;當時,此時有解,且在上單調遞減,與矛盾;當時,此時有解,且在上單調遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調遞減且,又在上單調遞增,故最多一根.又因為,,故設的解為,因為,故.所以在遞減,在遞增.因為方程有兩個實數(shù)根,故.結合(Ⅰ)(Ⅱ)有,在上恒成立.設的解為,則;設的解為,則.故,.故,得證.【點睛】本題主要考查了導數(shù)的幾何意義以及根據(jù)函數(shù)的單調性與最值求解參數(shù)值的問題.同時也考查了構造函數(shù)結合前問的結論證明不等式的方法.屬于難題.20、(1)(2)不存在;詳見解析【解析】

(1)設,,,通過,即為的中點,轉化求解,點的軌跡的方程.(2)設直線的方程為,先根據(jù),可得,①,再根據(jù)韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設,,則,,由題意知,所以為中點,由中點坐標公式得,即,又點在圓:上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論