版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省黃石市2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.2.拋物線的準(zhǔn)線與軸的交點(diǎn)為點(diǎn),過(guò)點(diǎn)作直線與拋物線交于、兩點(diǎn),使得是的中點(diǎn),則直線的斜率為()A. B. C.1 D.3.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度4.已知集合,集合,則().A. B.C. D.5.甲、乙、丙、丁四人通過(guò)抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說(shuō):“我沒(méi)抓到.”乙說(shuō):“丙抓到了.”丙說(shuō):“丁抓到了”丁說(shuō):“我沒(méi)抓到."已知他們四人中只有一人說(shuō)了真話(huà),根據(jù)他們的說(shuō)法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁6.某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種7.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.8.M、N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π9.甲、乙、丙、丁四位同學(xué)利用暑假游玩某風(fēng)景名勝大峽谷,四人各自去景區(qū)的百里絕壁、千丈瀑布、原始森林、遠(yuǎn)古村寨四大景點(diǎn)中的一個(gè),每個(gè)景點(diǎn)去一人.已知:①甲不在遠(yuǎn)古村寨,也不在百里絕壁;②乙不在原始森林,也不在遠(yuǎn)古村寨;③“丙在遠(yuǎn)古村寨”是“甲在原始森林”的充分條件;④丁不在百里絕壁,也不在遠(yuǎn)古村寨.若以上語(yǔ)句都正確,則游玩千丈瀑布景點(diǎn)的同學(xué)是()A.甲 B.乙 C.丙 D.丁10.已知復(fù)數(shù)和復(fù)數(shù),則為A. B. C. D.11.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對(duì)稱(chēng);④以軸的某一條垂線為軸作軸對(duì)稱(chēng).A.①③ B.③④ C.②③ D.②④12.在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.11二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)雙曲線的一條漸近線方程為,則該雙曲線的離心率為_(kāi)___________.14.某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過(guò)程必須先后經(jīng)過(guò)兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,再次燒制過(guò)程相互獨(dú)立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過(guò)第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過(guò)第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產(chǎn)品合格的概率為_(kāi)_______;經(jīng)過(guò)前后兩次燒制后,合格工藝品的件數(shù)為,則隨機(jī)變量的期望為_(kāi)_______.15.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于_____.16.若實(shí)數(shù)x,y滿(mǎn)足約束條件,則的最大值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.18.(12分)設(shè),函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對(duì)任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.19.(12分)如圖,在正四棱錐中,,點(diǎn)、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長(zhǎng).20.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時(shí),游戲停止,記得分的概率和為.①求;②當(dāng)時(shí),記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.21.(12分)隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強(qiáng)烈的沖擊.某雜志社近9年來(lái)的紙質(zhì)廣告收入如下表所示:根據(jù)這9年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.243;根據(jù)后5年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.984.(1)如果要用線性回歸方程預(yù)測(cè)該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個(gè)方案,方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測(cè),方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測(cè).從實(shí)際生活背景以及線性相關(guān)性檢驗(yàn)的角度分析,你覺(jué)得哪個(gè)方案更合適?附:相關(guān)性檢驗(yàn)的臨界值表:(2)某購(gòu)物網(wǎng)站同時(shí)銷(xiāo)售某本暢銷(xiāo)書(shū)籍的紙質(zhì)版本和電子書(shū),據(jù)統(tǒng)計(jì),在該網(wǎng)站購(gòu)買(mǎi)該書(shū)籍的大量讀者中,只購(gòu)買(mǎi)電子書(shū)的讀者比例為,紙質(zhì)版本和電子書(shū)同時(shí)購(gòu)買(mǎi)的讀者比例為,現(xiàn)用此統(tǒng)計(jì)結(jié)果作為概率,若從上述讀者中隨機(jī)調(diào)查了3位,求購(gòu)買(mǎi)電子書(shū)人數(shù)多于只購(gòu)買(mǎi)紙質(zhì)版本人數(shù)的概率.22.(10分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫(huà)出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過(guò)點(diǎn),分別畫(huà)出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問(wèn)題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.2、B【解析】
設(shè)點(diǎn)、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點(diǎn),設(shè)點(diǎn)、,設(shè)直線的方程為,由于點(diǎn)是的中點(diǎn),則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,,解得,因此,直線的斜率為.故選:B.【點(diǎn)睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問(wèn)題,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.3、A【解析】
根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因?yàn)椋室玫?,只需將向左平移個(gè)單位長(zhǎng)度.故選:A.【點(diǎn)睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.4、A【解析】
算出集合A、B及,再求補(bǔ)集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點(diǎn)睛】本題考查集合的交集、補(bǔ)集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.5、A【解析】
可采用假設(shè)法進(jìn)行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒(méi)有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜](méi)有抓到就是真的,與他們四人中只有一個(gè)人抓到是矛盾的;假設(shè)甲:我沒(méi)有抓到是假的,那么?。何覜](méi)有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點(diǎn)睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進(jìn)行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.6、B【解析】
分三種情況,任務(wù)A排在第一位時(shí),E排在第二位;任務(wù)A排在第二位時(shí),E排在第三位;任務(wù)A排在第三位時(shí),E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項(xiàng)不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時(shí),E排在第二位,剩下四個(gè)位置,先排好D、F,再在D、F之間的3個(gè)空位中插入B、C,此時(shí)共有排列方法:;如果任務(wù)A排在第二位時(shí),E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時(shí),E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問(wèn)題,考查了學(xué)生的邏輯推理能力,屬于中檔題.7、D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點(diǎn)睛】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.8、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.9、D【解析】
根據(jù)演繹推理進(jìn)行判斷.【詳解】由①②④可知甲乙丁都不在遠(yuǎn)古村寨,必有丙同學(xué)去了遠(yuǎn)古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景點(diǎn)的同學(xué)是?。蔬x:D.【點(diǎn)睛】本題考查演繹推理,掌握演繹推理的定義是解題基礎(chǔ).10、C【解析】
利用復(fù)數(shù)的三角形式的乘法運(yùn)算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點(diǎn)睛】熟練掌握復(fù)數(shù)的三角形式的乘法運(yùn)算法則是解題的關(guān)鍵,復(fù)數(shù)問(wèn)題高考必考,常見(jiàn)考點(diǎn)有:點(diǎn)坐標(biāo)和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,點(diǎn)的象限和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運(yùn)算,復(fù)數(shù)的模長(zhǎng)的計(jì)算.11、D【解析】
計(jì)算得到,,故函數(shù)是周期函數(shù),軸對(duì)稱(chēng)圖形,故②④正確,根據(jù)圖像知①③錯(cuò)誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個(gè)單位時(shí),重合,故②正確;,,故,函數(shù)關(guān)于對(duì)稱(chēng),故④正確;根據(jù)圖像知:①③不正確;故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)和圖像的綜合應(yīng)用.12、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長(zhǎng)度以及使不等式成立的的范圍區(qū)間長(zhǎng)度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長(zhǎng)度為6,使得成立的的范圍為,區(qū)間長(zhǎng)度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識(shí)點(diǎn)有長(zhǎng)度型幾何概型概率公式,等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)漸近線得到,,計(jì)算得到離心率.【詳解】,一條漸近線方程為:,故,,.故答案為:.【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,意在考查學(xué)生的計(jì)算能力.14、0.380.9【解析】
考慮恰有一件的三種情況直接計(jì)算得到概率,隨機(jī)變量的可能取值為,計(jì)算得到概率,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】第一次燒制后恰有一件產(chǎn)品合格的概率為:.甲、乙、丙三件產(chǎn)品合格的概率分別為:,,.故隨機(jī)變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點(diǎn),即求.【詳解】不妨設(shè)點(diǎn)P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn)∴,.∵M(jìn),N分別為PQ,PF的中點(diǎn),∴,∵PQ垂直l于點(diǎn)Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點(diǎn),∴,故答案為:2.【點(diǎn)睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.16、3【解析】
作出可行域,可得當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),.故答案為:3.【點(diǎn)睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)詳解;(2)【解析】
(1)取中點(diǎn),根據(jù),利用線面垂直的判定定理,可得平面,最后可得結(jié)果.(2)利用建系,假設(shè)長(zhǎng)度,可得,以及平面的一個(gè)法向量,然后利用向量的夾角公式,可得結(jié)果.【詳解】(1)取中點(diǎn),連接,如圖由,所以由,平面所以平面,又平面所以(2)假設(shè),由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標(biāo)系,如圖設(shè)平面的一個(gè)法向量為則令,所以則直線與平面所成角的正弦值為【點(diǎn)睛】本題考查線面垂直、線線垂直的應(yīng)用,還考查線面角,學(xué)會(huì)使用建系的方法來(lái)解決立體幾何問(wèn)題,將幾何問(wèn)題代數(shù)化,化繁為簡(jiǎn),屬中檔題.18、(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見(jiàn)解析;(2)且;【解析】
(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過(guò)討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時(shí),函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿(mǎn)足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時(shí),故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時(shí),遞減,故當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減,故在處取得極大值,不合題意;時(shí),則在遞減,在,遞增,①當(dāng)時(shí),,故在遞減,可得當(dāng)時(shí),,當(dāng)時(shí),,,易證,令,,令,故,則,故在遞增,則,即時(shí),,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時(shí),,遞增,不合題意;③當(dāng)時(shí),,當(dāng),時(shí),,遞減,當(dāng)時(shí),,遞增,故在處取極小值,符合題意,綜上,實(shí)數(shù)的范圍是且.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,屬于難題.19、(1)證明見(jiàn)解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設(shè)AC、BD交點(diǎn)為O,則以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系,可用空間向量法解決問(wèn)題.(1)只要證明=0即可證明垂直;(2)設(shè)=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補(bǔ)可求得.試題解析:(1)連結(jié)AC、BD交于點(diǎn)O,以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系.因?yàn)镻A=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因?yàn)椋?,所以MN⊥AD(2)解:因?yàn)镸在PA上,可設(shè)=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設(shè)平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可?。?λ-1,0,λ).因?yàn)槠矫鍭BD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點(diǎn):用空間向量法證垂直、求二面角.20、(1)分布列見(jiàn)解析,數(shù)學(xué)期望為6;(2)①;②證明見(jiàn)解析【解析】
(1)變量的所有可能取值為4,5,6,7,8,分別求出對(duì)應(yīng)的概率,進(jìn)而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進(jìn)而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當(dāng)且時(shí),,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進(jìn)而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時(shí),有,則時(shí),,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于中檔題.21、(1)選取方案二更合適;(2)【解析】
(1)可以預(yù)見(jiàn),2019年的紙質(zhì)廣告收入會(huì)接著下跌,前四年的增長(zhǎng)趨勢(shì)已經(jīng)不能作為預(yù)測(cè)后續(xù)數(shù)據(jù)的依據(jù),而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對(duì)值,所以有的把握認(rèn)為與具有線性相關(guān)關(guān)系,從而可得結(jié)論;(2)求得購(gòu)買(mǎi)電子書(shū)的概率為,只購(gòu)買(mǎi)紙質(zhì)書(shū)的概率為,購(gòu)買(mǎi)電子書(shū)人數(shù)多于只購(gòu)買(mǎi)紙質(zhì)書(shū)人數(shù)有兩種情況:3人購(gòu)買(mǎi)電子書(shū),2人購(gòu)買(mǎi)電子書(shū)一人只購(gòu)買(mǎi)紙質(zhì)書(shū),由此能求出購(gòu)買(mǎi)電子書(shū)人數(shù)多于只購(gòu)買(mǎi)紙質(zhì)版本人數(shù)的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統(tǒng)紙媒受到了強(qiáng)烈的沖擊,從表格中的數(shù)據(jù)中可以看出從2014年開(kāi)始,廣告收入呈現(xiàn)逐年下降的趨勢(shì),可以預(yù)見(jiàn),2019年的紙質(zhì)廣告收入會(huì)接著下跌,前四年的增長(zhǎng)趨勢(shì)已經(jīng)不能作為預(yù)測(cè)后續(xù)數(shù)據(jù)的依據(jù).②相關(guān)系數(shù)越
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 供熱供氣工程履約擔(dān)保格式
- 2025版?zhèn)湄浶袠I(yè)質(zhì)量認(rèn)證合同范本3篇
- 展覽館弱電系統(tǒng)改造合同模板
- 醫(yī)療服務(wù)票據(jù)管理策略與流程
- 2025年度綠色辦公用品采購(gòu)及回收利用合同3篇
- 紡織服裝電力供應(yīng)協(xié)議準(zhǔn)則
- 城市濱水區(qū)改造房屋拆除工程協(xié)議
- 2025版電梯設(shè)備安裝與維護(hù)合同范本3篇
- 船只租賃合同:水上建筑維修
- 2025版商用空調(diào)定期檢查、保養(yǎng)與故障處理合同3篇
- 房地產(chǎn)激勵(lì)培訓(xùn)
- 山東省濟(jì)南市2023-2024學(xué)年高二上學(xué)期期末考試地理試題 附答案
- 違章建筑舉報(bào)范文
- 2024幼師年終工作總結(jié)
- Unit 4 Plants around us Part A(說(shuō)課稿)-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 糖尿病傷口護(hù)理
- 人教版(2024新版)八年級(jí)上冊(cè)物理期末必刷單項(xiàng)選擇題50題(含答案解析)
- 建筑師業(yè)務(wù)實(shí)習(xí)答辯
- 在編警察聘用合同范例
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 生物 含解析
- 設(shè)備維護(hù)保養(yǎng)培訓(xùn)
評(píng)論
0/150
提交評(píng)論