版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河北省唐山市遵化市2025屆高考數(shù)學(xué)倒計時模擬卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]2.已知是虛數(shù)單位,若,則()A. B.2 C. D.103.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.4.已知集合,,則等于()A. B. C. D.5.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個6.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.8.已知向量,,則向量與的夾角為()A. B. C. D.9.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.10.?dāng)?shù)列滿足,且,,則()A. B.9 C. D.711.已知集合,則集合的非空子集個數(shù)是()A.2 B.3 C.7 D.812.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設(shè)送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,,是邊的垂直平分線上的一點,則__________.14.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.15.我國古代數(shù)學(xué)著作《九章算術(shù)》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價各幾何?”設(shè)人數(shù)、物價分別為、,滿足,則_____,_____.16.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.18.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.19.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.20.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.21.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點分別為,,點,求的值.22.(10分)已知數(shù)列的前項和為,且滿足().(1)求數(shù)列的通項公式;(2)設(shè)(),數(shù)列的前項和.若對恒成立,求實數(shù),的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.2、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.3、B【解析】
設(shè),則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.4、A【解析】
進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎(chǔ)題.5、C【解析】
計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠(yuǎn)為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學(xué)生的空間想象能力和計算能力.6、B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時,直線,直線,此時兩條直線平行;當(dāng)時,直線,直線,此時兩條直線平行.所以當(dāng)時,推不出,故“”是“”的不充分條件,當(dāng)時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來考慮,后者依據(jù)兩個條件之間的推出關(guān)系,本題屬于中檔題.7、B【解析】
求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點,則,∴.故選:B.【點睛】本題考查函數(shù)的零點,考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍.8、C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標(biāo)運算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時,通常代入公式進行計算.9、A【解析】
先利用最高點縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.10、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.11、C【解析】
先確定集合中元素,可得非空子集個數(shù).【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個.12、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點睛】考查幾何概型,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出圖形,設(shè)點為線段的中點,可得出且,進而可計算出的值.【詳解】設(shè)點為線段的中點,則,,,.故答案為:.【點睛】本題考查平面向量數(shù)量積的計算,涉及平面向量數(shù)量積運算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計算能力,屬于中等題.14、【解析】
由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導(dǎo)數(shù)在實際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.15、【解析】
利用已知條件,通過求解方程組即可得到結(jié)果.【詳解】設(shè)人數(shù)、物價分別為、,滿足,解得,.故答案為:;.【點睛】本題考查函數(shù)與方程的應(yīng)用,方程組的求解,考查計算能力,屬于基礎(chǔ)題.16、【解析】由題意得,二項式展開式的通項為,令,則,所以得系數(shù)為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長,得出各點坐標(biāo),用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.18、(1)故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號判斷單調(diào)性.(Ⅱ)分析題意可得對任意,恒成立,構(gòu)造函數(shù),則有對任意,恒成立,然后通過求函數(shù)的最值可得所求.試題解析:(I)由題意得,,∴.當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,令,解得;令,解得.故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.綜上,當(dāng)時,函數(shù)在上單調(diào)遞增;當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(II)由題意知.,當(dāng)時,函數(shù)單調(diào)遞增.不妨設(shè),又函數(shù)單調(diào)遞減,所以原問題等價于:當(dāng)時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調(diào)遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調(diào)遞增,所以函數(shù)在上的最大值為.由,解得.故實數(shù)的最小值為.19、(1)證明見解析;(2)是,理由見解析.【解析】
(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達定理即可證明,需要分類討論,【詳解】解:(1)當(dāng)時直線方程為或,直線與橢圓相切.當(dāng)時,由得,由題知,,即,所以.故直線與橢圓相切.(2)設(shè),,當(dāng)時,,,,所以,即.當(dāng)時,由得,則,,.因為.所以,即.故為定值.【點睛】本題考查橢圓的簡單性質(zhì),考查向量的運算,注意直線方程和橢圓方程聯(lián)立,運用韋達定理,考查化簡整理的運算能力,屬于中檔題.20、(1)(2)【解析】
(1)當(dāng)時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時,,原不等式可化為,①當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當(dāng)且僅當(dāng),即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.21、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保技術(shù)模擬實驗與操作技能考核試卷
- 潮流計算課程設(shè)計論文
- 2024年職業(yè)培訓(xùn)機構(gòu)教師教學(xué)質(zhì)量監(jiān)控聘用合同2篇
- 電阻器尺寸與功率關(guān)系研究考核試卷
- 2024年網(wǎng)絡(luò)科技公司技術(shù)服務(wù)合同
- 2024年水利水電施工場地租賃合同2篇
- 稅法課程設(shè)計模板
- 2024年春季旅游節(jié)慶典活動策劃與實施服務(wù)合同3篇
- 粵嵌電子鋼琴課程設(shè)計
- 石灰在防火材料研發(fā)中的應(yīng)用考核試卷
- 客訴品質(zhì)異常處理單
- 垃圾焚燒發(fā)電廠消防系統(tǒng)安裝方案
- 露天礦山危險源辨識與風(fēng)險評價
- DL∕T 617-2019 氣體絕緣金屬封閉開關(guān)設(shè)備技術(shù)條件
- 履帶吊司機安全技術(shù)交底
- 班級管理(第3版)教學(xué)課件匯總?cè)纂娮咏贪?完整版)
- 2022年度母嬰護理師技能試卷題庫
- 玻璃采光頂施工工藝
- 2024年義務(wù)教育國家課程設(shè)置實施方案
- 某乳業(yè)公司價格策略研究
- T∕CIAPS 0012-2021 磷酸鐵鋰電池壽命加速循環(huán)試驗方法
評論
0/150
提交評論