版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東濟南市2025屆高三一診考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數的最大值為()A.7 B.15 C.31 D.632.已知等差數列中,,,則數列的前10項和()A.100 B.210 C.380 D.4003.已知實數滿足,則的最小值為()A. B. C. D.4.已知集合,則全集則下列結論正確的是()A. B. C. D.5.設,,,則,,三數的大小關系是A. B.C. D.6.下圖是我國第24~30屆奧運獎牌數的回眸和中國代表團獎牌總數統(tǒng)計圖,根據表和統(tǒng)計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數一直保持上升趨勢B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數、銀牌數、銅牌數都有所下降D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數的中位數是54.57.為了加強“精準扶貧”,實現偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.648.已知,,,則()A. B.C. D.9.若,則“”是“的展開式中項的系數為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件10.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種11.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.12.已知是虛數單位,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知非零向量的夾角為,且,則______.14.的展開式中的系數為__________(用具體數據作答).15.設為互不相等的正實數,隨機變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)16.我國古代數學著作《九章算術》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數、物價各幾何?”設人數、物價分別為、,滿足,則_____,_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,設橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標準方程;(2)設直線交橢圓于,兩點,設直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.18.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經出現了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合..(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.20.(12分)下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產品銷量(萬臺)的具體數據:月份56789101112研發(fā)費用(百萬元)2361021131518產品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據數據可知與之間存在線性相關關系,求出與的線性回歸方程(系數精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產品銷售平均數的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數大約多少元.參考數據:,,,,參考公式:相關系數,其回歸直線中的,若隨機變量服從正態(tài)分布,則,.21.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設點,若直線與曲線相交于、兩點,求的值22.(10分)已知數列滿足,.(1)求數列的通項公式;(2)若,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.2、B【解析】
設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.【點睛】本題考查等差數列的基本量計算以及前項和,屬于基礎題.3、A【解析】
所求的分母特征,利用變形構造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質在于代數式的靈活變形,拼系數、湊常數是關鍵.(1)拼湊的技巧,以整式為基礎,注意利用系數的變化以及等式中常數的調整,做到等價變形;(2)代數式的變形以拼湊出和或積的定值為目標(3)拆項、添項應注意檢驗利用基本不等式的前提.4、D【解析】
化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.5、C【解析】
利用對數函數,指數函數以及正弦函數的性質和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數值,指數值和正弦值大小的比較,是基礎題,解題時選擇合適的中間值比較是關鍵,注意合理地進行等價轉化.6、B【解析】
根據表格和折線統(tǒng)計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數、銅牌數有所下降,銀牌數有所上升,錯誤;D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數按照順序排列的中位數為,不正確;故選:B【點睛】此題考查統(tǒng)計圖,關鍵點讀懂折線圖,屬于簡單題目.7、B【解析】
根據題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數學文化,還考查數學建模能力以及分類討論思想,屬于中檔題.8、C【解析】
利用二倍角公式,和同角三角函數的商數關系式,化簡可得,即可求得結果.【詳解】,所以,即.故選:C.【點睛】本題考查三角恒等變換中二倍角公式的應用和弦化切化簡三角函數,難度較易.9、B【解析】
求得的二項展開式的通項為,令時,可得項的系數為90,即,求得,即可得出結果.【詳解】若則二項展開式的通項為,令,即,則項的系數為,充分性成立;當的展開式中項的系數為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.10、B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.11、B【解析】若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;綜上選B.12、B【解析】
根據復數的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數的乘法,熟記運算法則即可,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點睛】本題考查根據向量的數量積運算求向量的模,關鍵在于將所求的向量的模平方,利用向量的數量積化簡求解即可,屬于基礎題.14、【解析】
利用二項展開式的通項公式可求的系數.【詳解】的展開式的通項公式為,令,故,故的系數為.故答案為:.【點睛】本題考查二項展開式中指定項的系數,注意利用通項公式來計算,本題屬于容易題.15、>【解析】
根據方差計算公式,計算出的表達式,由此利用差比較法,比較出兩者的大小關系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實數,故,也即,也即.故答案為:【點睛】本小題主要考查隨機變量期望和方差的計算,考查差比較法比較大小,考查運算求解能力,屬于難題.16、【解析】
利用已知條件,通過求解方程組即可得到結果.【詳解】設人數、物價分別為、,滿足,解得,.故答案為:;.【點睛】本題考查函數與方程的應用,方程組的求解,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點,該定點的坐標為.【解析】
(1)因為橢圓過點,所以①,設為坐標原點,因為,所以,又,所以②,將①②聯立解得(負值舍去),所以橢圓的標準方程為.(2)由(1)可知,設,.將代入,消去可得,則,,,所以,所以,此時,所以,此時直線的方程為,即,令,可得,所以直線過定點,該定點的坐標為.18、(1)有的把握認為是否戴口罩出行的行為與年齡有關.(2)【解析】
(1)根據列聯表和獨立性檢驗的公式計算出觀測值,從而由參考數據作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據獨立重復事件的概率公式即可求得結果.【詳解】(1)由題意可知,有的把握認為是否戴口罩出行的行為與年齡有關.(2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點睛】本題主要考查獨立性檢驗及獨立重復事件的概率求法,難度一般.19、(1)證明見解析(2)存在,為中點【解析】
(1)證明面,即證明平面平面;(2)以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系.利用向量方法得,解得,所以為中點.【詳解】(1)由于為中點,.又,故,所以為直角三角形且,即.又因為面,面面,面面,故面,又面,所以面面.(2)由(1)知面,又四邊形為矩形,則兩兩垂直.以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系.則,設,則,設平面的法向量為,則有,令,則,則平面的一個法向量為,同理可得平面的一個法向量為,設平面與平面所成角為,則由題意可得,解得,所以點為中點.【點睛】本題主要考查空間幾何位置關系的證明,考查空間二面角的應用,意在考查學生對這些知識的理解掌握水平.20、(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由題意計算x、y的平均值,進而由公式求出回歸系數b和a,即可寫出回歸直線方程;(Ⅱ)由題意計算平均數μ,得出z~N(μ,),求出日銷量z∈[0.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024幼兒園教職工派遣及績效管理合同3篇
- 2025年度服裝租賃行業(yè)創(chuàng)新服務合同3篇
- 2024榨菜種植與農村電商物流合作合同3篇
- 2025年度水電工程勞務分包合同范本12篇
- 2024年革新突破:七款合同管理工具對比
- 2024年自卸車電子產品運輸合同
- 2025版非煤礦山勞務承包與礦山環(huán)境保護合同3篇
- 2024年駕校變電站建設項目標準協議版
- 2025年度區(qū)塊鏈技術在版權保護與數字內容分發(fā)中的應用合同2篇
- 2025年企業(yè)高校學生實習實訓合作框架協議2篇
- 安全注射培訓考核試題及答案
- 自動化包裝流水線解決方案
- 工藝豎井開挖支護施工技術方案(清楚明了)
- 水利五大員施工員教材講義
- 醫(yī)療機構資產負債表(通用模板)
- 廢舊鋰離子電池高值資源化回收利用項目環(huán)評報告書
- 審計英語詞匯大全講課教案
- JIS G3507-1-2021 冷鐓用碳素鋼.第1部分:線材
- 初二家長會ppt通用PPT課件
- 小學生家庭作業(yè)布置存在的誤區(qū)及改進策略論文1
- 生物醫(yī)學研究的統(tǒng)計學方法課后習題答案 2014 主編 方積乾
評論
0/150
提交評論