




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2024年滬科版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷597考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共9題,共18分)1、在對(duì)人們休閑方式的一次調(diào)查中;根據(jù)數(shù)據(jù)建立如下的2×2列聯(lián)表:
。休閑。
性別看電視運(yùn)動(dòng)男820女1612為了判斷休閑方式是滯與性別有關(guān),根據(jù)表中數(shù)據(jù),得到因?yàn)?.841≤x2≤6.635;所以判定休閑方式與性別有關(guān)系,那么這種判斷出錯(cuò)的可能性至多為()
(參考數(shù)據(jù):P(x2≥3.841)≈0.05,P(x2≥6.635)≈0.01)
A.1%
B.99%
C.5%
D.95%
2、等比數(shù)列{an}的通項(xiàng)公式是則前3項(xiàng)和S3=()
A.
B.
C.
D.
3、若函數(shù)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是()A.B.C.D.不存在這樣的實(shí)數(shù)k4、設(shè)則的值為A.10B.11C.12D.135、【題文】已知角的終邊經(jīng)過(guò)點(diǎn)且則的值是A.B.C.D.6、若曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程是x﹣y+1=0,則()A.a=1,b=2B.a=﹣1,b=2C.a=1,b=﹣2D.a=﹣1,b=﹣27、下列敘述中錯(cuò)誤的是()A.A∈l,A∈α,B∈l,B∈a?l?αB.梯形一定是平面圖形C.空間中三點(diǎn)能確定一個(gè)平面D.A∈α,A∈β,B∈α,B∈β?α∩β=AB8、在平面幾何里有射影定理:設(shè)三角形ABC的兩邊AB⊥AC,D是A點(diǎn)在BC上的射影,則AB2=BD?BC.拓展到空間,在四面體A-BCD中,AD⊥面ABC,點(diǎn)O是A在面BCD內(nèi)的射影,且O在△BCD內(nèi),類比平面三角形射影定理,得出正確的結(jié)論是()A.S△ABC2=S△BCO?S△BCDB.S△ABD2=S△BOD?S△BOCC.S△ADC2=S△DOC?S△BOCD.S△BDC2=S△ABD?S△ABC9、若xy
滿足不等式{x+y鈭?3鈮?0x鈭?y+3鈮?0y鈮?鈭?1
則z=3x+y
的最大值為(
)
A.11
B.鈭?11
C.13
D.鈭?13
評(píng)卷人得分二、填空題(共8題,共16分)10、冪函數(shù)的圖像經(jīng)過(guò)點(diǎn)則=____11、【題文】若點(diǎn)在以點(diǎn)為焦點(diǎn)的拋物線上,則等于__________12、【題文】已知S是△ABC所在平面外一點(diǎn),D是SC的中點(diǎn),若=則x+y+z=____13、【題文】在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm(1<m<n)的大小關(guān)系是__________14、【題文】、在△ABC中,三邊a、b、c所對(duì)的角分別為A、B、C,a=°,則邊c=____。15、【題文】=_________.16、【題文】在直角坐標(biāo)系xoy中,若角的始邊為x軸的非負(fù)半軸,終邊為射線l:y=x(x≥0).則的值為_(kāi)___.17、已知矩陣的逆矩陣是則正實(shí)數(shù)a=______.評(píng)卷人得分三、作圖題(共8題,共16分)18、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
19、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最小.(如圖所示)20、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)21、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
22、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)23、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)24、分別畫(huà)一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、解答題(共1題,共5分)25、如圖,直線y=kx+b與橢圓=1交于A;B兩點(diǎn),記△AOB的面積為S.
(I)求在k=0,0<b<1的條件下;S的最大值;
(Ⅱ)當(dāng)|AB|=2;S=1時(shí),求直線AB的方程.
評(píng)卷人得分五、計(jì)算題(共3題,共30分)26、已知等式在實(shí)數(shù)范圍內(nèi)成立,那么x的值為_(kāi)___.27、1.本小題滿分12分)對(duì)于任意的實(shí)數(shù)不等式恒成立,記實(shí)數(shù)的最大值是(1)求的值;(2)解不等式28、解不等式組.評(píng)卷人得分六、綜合題(共4題,共28分)29、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)AB,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;
②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.30、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)AB,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;
②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.31、(2015·安徽)設(shè)橢圓E的方程為+=1(ab0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足=2直線OM的斜率為32、已知f(x)=﹣3x2+a(6﹣a)x+6.參考答案一、選擇題(共9題,共18分)1、C【分析】
∵3.841≤x2≤6.635,P(x2≥3.841)≈0.05,P(x2≥6.635)≈0.01;
∴判斷出錯(cuò)的可能性至多為5%;
故選C.
【解析】【答案】利用x2與臨界值比較;即可得到結(jié)論.
2、C【分析】
因?yàn)榈缺葦?shù)列{an}的通項(xiàng)公式是
所以其首項(xiàng)為公比為.
所以前3項(xiàng)和S3==.
故選:C.
【解析】【答案】直接由其通項(xiàng)公式求出數(shù)列的首項(xiàng)和公比;再代入等比數(shù)列的求和公式即可求出結(jié)果.
3、A【分析】【解析】試題分析:當(dāng)時(shí),則函數(shù)的增函數(shù);當(dāng)時(shí),則函數(shù)的減函數(shù),若函數(shù)上不是單調(diào)函數(shù),則或解得故選A??键c(diǎn):函數(shù)的單調(diào)性【解析】【答案】A4、B【分析】【解析】【答案】B5、A【分析】【解析】因?yàn)辄c(diǎn)P坐標(biāo)為又所以點(diǎn)P在第三象限,所以m>0;
于是故選A【解析】【答案】A6、B【分析】【解答】解:∵y=x2+ax+b;
∴y′=2x+a;
∵y′|x=1=2+a;
∴曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程為y﹣b=(2+a)(x﹣1);
∵曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程為x﹣y+1=0;
∴a=﹣1,b=2.
故選B.
【分析】由y=x2+ax+b,知y′=2x+a,再由曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程為x﹣y+1=0,求出a和b.7、C【分析】解:A.根據(jù)公理1可知;A正確.
B.∵梯形的一組對(duì)邊是平行的;∴梯形是平面圖形,故B正確.
C.若三點(diǎn)共線時(shí);無(wú)法確定一個(gè)平面,故C錯(cuò)誤.
D.∵A;B是兩個(gè)平面的公共點(diǎn),∴α∩β=AB成立;
故錯(cuò)誤的是C;
故選:C
根據(jù)平面的基本性質(zhì)和討論;分別進(jìn)行判斷即可.
本題主要考查平面基本性質(zhì)的應(yīng)用,要求熟練掌握平面的基本性質(zhì)和公理.【解析】【答案】C8、A【分析】解:由已知在平面幾何中,
若△ABC中;AB⊥AC,AE⊥BC,E是垂足;
則AB2=BD?BC;
我們可以類比這一性質(zhì);推理出:
若三棱錐A-BCD中;AD⊥面ABC,AO⊥面BCD,O為垂足;
則(S△ABC)2=S△BOC.S△BDC.
故選A.
這是一個(gè)類比推理的題,在由平面圖形到空間圖形的類比推理中,一般是由點(diǎn)的性質(zhì)類比推理到線的性質(zhì),由線的性質(zhì)類比推理到面的性質(zhì),由已知在平面幾何中,(如圖所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,則AB2=BD?BC,我們可以類比這一性質(zhì),推理出若三棱錐A-BCD中,AD⊥面ABC,AO⊥面BCD,O為垂足,則(S△ABC)2=S△BOC.S△BDC
類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).【解析】【答案】A9、A【分析】解:不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=3x+y
得y=鈭?3x+z
平移直線y=鈭?3x+z
則由圖象可知當(dāng)直線y=鈭?3x+z
經(jīng)過(guò)點(diǎn)A
時(shí)直線y=鈭?3x+z
的截距最大;
此時(shí)z
最大;
此時(shí)M=z=3隆脕32+5隆脕52=17
由{x+y鈭?3=0y=鈭?1
解得{y=鈭?1x=4
即A(4,鈭?1)
此時(shí)z=3隆脕4鈭?1=11
故選:A
.
作出不等式組對(duì)應(yīng)的平面區(qū)域;根據(jù)z
的幾何意義,利用數(shù)形結(jié)合即可得到最大值.
本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z
的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.【解析】A
二、填空題(共8題,共16分)10、略
【分析】【解析】試題分析:設(shè)代入點(diǎn)得考點(diǎn):冪函數(shù)求解析式求值【解析】【答案】11、略
【分析】【解析】
試題分析:欲求|PF|,根據(jù)拋物線的定義,即求P(3,m)到準(zhǔn)線x=-1的距離,從而求得|PF|即可.解:拋物線為y2=4x;準(zhǔn)線為x=-1,∴|PF|為P(3,m)到準(zhǔn)線x=-1的距離,即為4.故填寫4.
考點(diǎn):橢圓的參數(shù)方程;拋物線。
點(diǎn)評(píng):本小題主要考查橢圓的參數(shù)方程、拋物線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題【解析】【答案】412、略
【分析】【解析】解:因?yàn)椋?/p>
故x+y+z=0.【解析】【答案】013、略
【分析】【解析】略【解析】【答案】am≥bm14、略
【分析】【解析】略【解析】【答案】15、略
【分析】【解析】
試題分析:.
考點(diǎn):二倍角的正弦公式.【解析】【答案】116、略
【分析】【解析】三角函數(shù)的求值【解析】【答案】17、略
【分析】解:設(shè)A=則丨A丨=a2-3;
則A的逆矩陣為:
∴=
解得:a=±2;
由a>0;a=2;
故答案為:2.
由求得丨A丨=a2-3,由A-1=×A*,求得A-1;根據(jù)矩陣相等求得a的值.
本題考查逆矩陣的意義,考查求逆矩陣的求法,考查計(jì)算能力,屬于基礎(chǔ)題.【解析】2三、作圖題(共8題,共16分)18、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
19、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.20、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最小;
理由是兩點(diǎn)之間,線段最短.21、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
22、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.23、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最?。?/p>
理由是兩點(diǎn)之間,線段最短.24、解:畫(huà)三棱錐可分三步完成。
第一步:畫(huà)底面﹣﹣畫(huà)一個(gè)三角形;
第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);
第三步:畫(huà)側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).
畫(huà)四棱可分三步完成。
第一步:畫(huà)一個(gè)四棱錐;
第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫(huà)三棱錐和畫(huà)四棱臺(tái)都是需要先畫(huà)底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫(huà)四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共1題,共5分)25、略
【分析】
(Ⅰ)設(shè)點(diǎn)A的坐標(biāo)為(x1,b),點(diǎn)B的坐標(biāo)為(x2,b);
由解得
所以=≤b2+1-b2=1.
當(dāng)且僅當(dāng)時(shí);S取到最大值1.
(Ⅱ)【解析】
由
得①
△=4k2-b2+1;
=.②
設(shè)O到AB的距離為d,則
又因?yàn)?/p>
所以b2=k2+1,代入②式并整理,得
解得代入①式檢驗(yàn),△>0;
故直線AB的方程是或或或.
【解析】【答案】(Ⅰ)設(shè)出點(diǎn)A,B的坐標(biāo)利用橢圓的方程求得A,B的橫坐標(biāo),進(jìn)而利用弦長(zhǎng)公式和b;求得三角形面積表達(dá)式,利用基本不等式求得其最大值.
(Ⅱ)把直線與橢圓方程聯(lián)立,進(jìn)而利用弦長(zhǎng)公式求得AB的長(zhǎng)度的表達(dá)式,利用O到直線AB的距離建立方程求得b和k的關(guān)系式;求得k.則直線的方程可得.
五、計(jì)算題(共3題,共30分)26、略
【分析】【分析】先移項(xiàng)并整理得到=,然后兩邊進(jìn)行6次方,求解即可.【解析】【解答】解:原式可化為=;
6次方得,(x-1)3=(x-1)2;
即(x-1)2(x-2)=0;
∴x-1=0;x-2=0;
解得x=1或x=2.
故答案為:1或2.27、略
【分析】【解析】
(1)由絕對(duì)值不等式,有那么對(duì)于只需即則4分(2)當(dāng)時(shí):即則當(dāng)時(shí):即則當(dāng)時(shí):即則10分那么不等式的解集為12分【解析】【答案】(1)(2)28、解:由{#mathml#}x+3x+1
{#/mathml#}≤2得:{#mathml#}x?1x+1
{#/mathml#}≥0,解得x<﹣1或x≥1;由x2﹣6x﹣8<0得:3﹣{#mathml#}17
{#/mathml#}<x<3+{#mathml#}17
{#/mathml#},
∴不等式組得解集為(3﹣{#mathml#}17
{#/mathml#},﹣1)∪[1,3+{#mathml#}17
{#/mathml#})【分析】【分析】分別解不等式≤2與x2﹣6x﹣8<0,最后取其交集即可.六、綜合題(共4題,共28分)29、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);
設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).
(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長(zhǎng)度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長(zhǎng)定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:
(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點(diǎn)D.
∵點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點(diǎn)之間;線段最短”的原理可知:
此時(shí)AD+CD最?。稽c(diǎn)D的位置即為所求.(5分)
設(shè)直線BC的解析式為y=kx+b;
由直線BC過(guò)點(diǎn)(3;0),(0,3);
得
解這個(gè)方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對(duì)稱軸l為;即x=1.
將x=1代入y=-x+3;得y=-1+3=2.
∴點(diǎn)D的坐標(biāo)為(1;2).(7分)
說(shuō)明:用相似三角形或三角函數(shù)求點(diǎn)D的坐標(biāo)也可;答案正確給(2分).
(3)①連接AD.設(shè)直線l與x軸的交點(diǎn)記為點(diǎn)E.
由(2)知:當(dāng)AD+CD最小時(shí);點(diǎn)D的坐標(biāo)為(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD與⊙A相切.(9分)
②∵另一點(diǎn)D與D(1;2)關(guān)于x軸對(duì)稱;
∴D(1,-2).(11分)30、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);
設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).
(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長(zhǎng)度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長(zhǎng)定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:
(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點(diǎn)D.
∵點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點(diǎn)之間;線段最短”的原理可知:
此時(shí)AD+CD最??;點(diǎn)D的位置即為所求.(5分)
設(shè)直線BC的解析式為y=kx+b;
由直線BC過(guò)點(diǎn)(3;0),(0,3);
得
解這個(gè)方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對(duì)稱軸l為;即x=1.
將x=1代入y=-x+3;得y=-1+3=2.
∴點(diǎn)D的坐標(biāo)為(1;2).(7分)
說(shuō)明:用相似三角形或三角函數(shù)求點(diǎn)D的坐標(biāo)也可;答案正確給(2分).
(3)①連接AD.設(shè)直線l與x軸的交點(diǎn)記為點(diǎn)E.
由(2)知:當(dāng)AD+CD最小時(shí);點(diǎn)D的坐標(biāo)為(1,2).
∴DE=AE=BE=2.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)釩鐵行業(yè)市場(chǎng)運(yùn)營(yíng)狀況與發(fā)展?jié)摿Ψ治鰣?bào)告
- 2025-2030年中國(guó)重防腐涂料行業(yè)需求分析與發(fā)展?jié)摿ρ芯繄?bào)告
- 2025-2030年中國(guó)航空運(yùn)輸貨物保險(xiǎn)行業(yè)市場(chǎng)深度調(diào)查及投資前景預(yù)測(cè)報(bào)告
- 2025-2030年中國(guó)純銀首飾市場(chǎng)運(yùn)行狀況及發(fā)展趨勢(shì)分析報(bào)告
- 2025-2030年中國(guó)移動(dòng)支付產(chǎn)業(yè)十三五規(guī)劃與發(fā)展前景分析報(bào)告
- 2025年天津市建筑安全員B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 大連東軟信息學(xué)院《工程審計(jì)專業(yè)模擬實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州體育職業(yè)技術(shù)學(xué)院《生命教育概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 哈爾濱工業(yè)大學(xué)《三維場(chǎng)景制作》2023-2024學(xué)年第二學(xué)期期末試卷
- 商丘學(xué)院《智能駕駛原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 幼兒園一崗雙責(zé)制度及實(shí)施方案(5篇)
- 教學(xué)常規(guī)檢查記錄表
- 清真食品相關(guān)項(xiàng)目投資計(jì)劃書(shū)范文
- 《紐約國(guó)際介紹》課件
- 部編版語(yǔ)文七年級(jí)下冊(cè)期中專項(xiàng)復(fù)習(xí)-標(biāo)點(diǎn)符號(hào) 試卷(含答案)
- 更年期綜合癥研究白皮書(shū)
- 《學(xué)習(xí)共同體-走向深度學(xué)習(xí)》讀書(shū)分享
- 互聯(lián)網(wǎng)視域下微紀(jì)錄片情感化敘事研究-以《早餐中國(guó)》為例
- 芋頭種植技術(shù)要點(diǎn)
- 【基于近五年數(shù)據(jù)的鴻星爾克財(cái)務(wù)報(bào)表分析15000字】
- 公司員工獎(jiǎng)懲制度流程
評(píng)論
0/150
提交評(píng)論