版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年滬科新版八年級(jí)數(shù)學(xué)上冊(cè)階段測(cè)試試卷167考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共9題,共18分)1、正比例函數(shù)y=kx(k≠0)的函數(shù)值y隨x的增大而減小,則一次函數(shù)y=kx-k的圖象大致是()A.B.C.D.2、下列運(yùn)算錯(cuò)誤的是()A.B.C.D.3、某種流感病毒的直徑為0.00000008m,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.8×10-6mB.8×10-7mC.8×10-8mD.8×10-9m4、對(duì)于非零的實(shí)數(shù)a,b,規(guī)定a?b=若2?(2x-1)=1,則x=()A.B.C.D.5、下列命題;其中真命題有()
①4的平方根是2;
②有兩邊和一角相等的兩個(gè)三角形全等;
③順次連接任意四邊形各邊中點(diǎn)得到的四邊形是平行四邊形.A.0個(gè)B.3個(gè)C.2個(gè)D.1個(gè)6、如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0).將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為()A.4B.8C.16D.87、如圖所示的容器內(nèi)裝滿水,打開排水管,容器內(nèi)的水勻速流出,則容器內(nèi)液面的高度h隨時(shí)間x變化的函數(shù)圖象最接近實(shí)際情況的是()A.B.C.D.8、下列計(jì)算正確的是()A.2x2?3x3=6x6B.(x3)n÷x2n=xnC.(a+2b)2=a2+4ab+2b2D.(x-3y)2=x2-3xy+9y29、在?ABCD中,對(duì)角線AC、BD相交于O,下列說法一定正確的是()A.AC=BDB.AC⊥BDC.AO=DOD.AO=CO評(píng)卷人得分二、填空題(共8題,共16分)10、一個(gè)n邊形的內(nèi)角和是____,外角和是____,由一個(gè)頂點(diǎn)出發(fā)可以畫____條對(duì)角線.11、直線y=(2-5k)x+3k-2若經(jīng)過原點(diǎn),則k=____;若直線與x軸交于點(diǎn)(-1,0),則k=____,12、甲、乙兩組數(shù)據(jù)的平均數(shù)都是5,甲組數(shù)據(jù)的方差則成績(jī)比較穩(wěn)定的是.13、拋物線y=x2+x+2上三點(diǎn)(-2,a)、(-1,b),(3,c),則a、b、c的大小關(guān)系是______.14、函數(shù)y=xx+2
的自變量x
的取值范圍是______.15、(1)
化簡(jiǎn)19=
_______.(2)
將直線y=3x
沿y
軸向上平移2
個(gè)單位后,所得直線的函數(shù)解析式為________.(3)
矩形ABCD
的兩對(duì)角線相交于點(diǎn)O隆脧AOB=60鈭?AB=4cm,
則BC=
____cm.
(4)
如果一次函數(shù)y=x鈭?5
的圖象經(jīng)過點(diǎn)P(a,鈭?3)
和Q(鈭?4,b)
則(a鈭?5)隆脕(b+4)
的值是______(5)隆露
九章算術(shù)隆路
是我國古代最重要的數(shù)學(xué)著作之一,在“勾股”章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折者高幾何?”翻譯成數(shù)學(xué)問題是:在鈻?ABC
中,隆脧ACB=90鈭?AC+AB=18BC=6
求AC
的長(zhǎng).
若設(shè)AC=x
可列出的方程為________________________________.(6)
如圖,矩形紙片ABCD
中,AB=4AD=6
點(diǎn)P
是邊BC
上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)AA與點(diǎn)PP重合,折痕與矩形邊的交點(diǎn)分別為EEF
要使折痕始終與邊ABAD
有交點(diǎn),則BP
的取值范圍是___________.16、如圖,鈻?ABC
中,隆脧ABC=50?隆脧ACB=75?
點(diǎn)O
是鈻?ABC
的內(nèi)心,則隆脧BOC
的度數(shù)為.17、(2012春?青羊區(qū)校級(jí)月考)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)A、點(diǎn)C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(10,4).若點(diǎn)D為OA的中點(diǎn),點(diǎn)P為邊BC上的一動(dòng)點(diǎn),則△OPD為等腰三角形時(shí)的點(diǎn)P的坐標(biāo)為____.評(píng)卷人得分三、判斷題(共5題,共10分)18、判斷:=是關(guān)于y的分式方程.()19、判斷:菱形的對(duì)角線互相垂直平分.()20、平方數(shù)等于它的平方根的數(shù)有兩個(gè).____.(判斷對(duì)錯(cuò))21、全等的兩圖形必關(guān)于某一直線對(duì)稱.22、2x+1≠0是不等式評(píng)卷人得分四、證明題(共1題,共2分)23、在△ABC中;∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)當(dāng)直線MN繞著點(diǎn)C旋轉(zhuǎn)到如圖1所示的位置時(shí);
求證:①△ADC≌△CEB;②DE=AD+BE
(2)當(dāng)直線MN繞著點(diǎn)C旋轉(zhuǎn)到如圖2所示的位置時(shí);①找出圖中一對(duì)全等三角形;②DE;AD、BE之間有怎樣的數(shù)量關(guān)系,并加以證明.
評(píng)卷人得分五、計(jì)算題(共3題,共6分)24、已知:,求:(x+y)4的值.25、比較大?。?____(填入“>”或“<”號(hào)).26、(2013?金城江區(qū)二模)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于M;N兩點(diǎn).
(1)利用圖中條件;求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.評(píng)卷人得分六、綜合題(共4題,共16分)27、已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線上的動(dòng)點(diǎn).過點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E;交BD于點(diǎn)C.
(1)若點(diǎn)D坐標(biāo)是(-8;0),求A;B兩點(diǎn)坐標(biāo)及k的值.
(2)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.28、如圖;C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B;D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=2,DE=1,BD=8,設(shè)CD=x.
(1)用含x的代數(shù)式表示AC+CE的長(zhǎng);
(2)請(qǐng)問點(diǎn)C滿足什么條件時(shí);AC+CE的值最?。?/p>
(3)根據(jù)(2)中的規(guī)律和結(jié)論,請(qǐng)構(gòu)圖求出代數(shù)式的最小值.29、如圖所示,ABCD是矩形,AB=4cm,AD=3cm.把矩形沿直線AC折疊,點(diǎn)B落在E處,連接DE.四邊形ACED是什么圖形?為什么?它的面積是多少?30、在正方形ABCD中;點(diǎn)P是CD邊上一動(dòng)點(diǎn),連接PA,分別過點(diǎn)B;D作BE⊥PA、DF⊥PA,垂足分別為E、F,如圖①.
(1)請(qǐng)?zhí)骄緽E;DF、EF這三條線段的長(zhǎng)度具有怎樣的數(shù)量關(guān)系?若點(diǎn)P在DC的延長(zhǎng)線上;如圖②,那么這三條線段的長(zhǎng)度之間又具有怎樣的數(shù)量關(guān)系?若點(diǎn)P在CD的延長(zhǎng)線上呢,如圖③,請(qǐng)分別直接寫出結(jié)論;
(2)就(1)中的三個(gè)結(jié)論選擇一個(gè)加以證明.
參考答案一、選擇題(共9題,共18分)1、A【分析】【分析】由題意,利用正比例函數(shù)圖象性質(zhì)判斷得到k小于0,再利用一次函數(shù)性質(zhì)即可得到結(jié)果.【解析】【解答】解:∵正比例函數(shù)y=kx(k≠0)的函數(shù)值y隨x的增大而減?。?/p>
∴k<0;
則一次函數(shù)y=kx-k的圖象大致是:
故選A2、C【分析】【分析】根據(jù)分式的基本性質(zhì):分式的分子、分母同時(shí)乘以或除以同一個(gè)非0的數(shù)或式子,分式的值不變即可判斷.【解析】【解答】解:A;分式的分子、分母同時(shí)乘以同一個(gè)非0的數(shù)c;分式的值不變,正確,故本選項(xiàng)不符合題意;
B、==-2;正確,故本選項(xiàng)不符合題意;
C、=;錯(cuò)誤,故本選項(xiàng)符合題意;
D;分式的分子、分母同時(shí)乘以10;分式的值不變,正確,故本選項(xiàng)不符合題意.
故選C.3、C【分析】【分析】絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【解答】0.00000008=8×10-8.
故選:C.【點(diǎn)評(píng)】本題考查用科學(xué)記數(shù)法表示較小的數(shù).一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定4、C【分析】解:由題意;得。
-=1;
6x=5.
解得x=
檢驗(yàn):x=是分式方程的解;
故選:C.
根據(jù)a?b=可得方程,根據(jù)解方程,可得答案.
本題考查了解分式方程,利用等式的性質(zhì)得出整式方程是解題關(guān)鍵.【解析】C5、D【分析】【分析】根據(jù)平方根的定義對(duì)①進(jìn)行判斷;根據(jù)全等三角形的判定方法對(duì)②進(jìn)行判斷;根據(jù)三角形中位線性質(zhì)和平行四邊形的判定方法對(duì)③進(jìn)行判斷.【解析】【解答】解:4的平方根是±2;所以①錯(cuò)誤;
有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等;所以②錯(cuò)誤;
順次連接任意四邊形各邊中點(diǎn)得到的四邊形是平行四邊形;所以③正確.
故選D.6、C【分析】【分析】根據(jù)題意,線段BC掃過的面積應(yīng)為一平行四邊形的面積,其高是AC的長(zhǎng),底是點(diǎn)C平移的路程.求當(dāng)點(diǎn)C落在直線y=2x-6上時(shí)的橫坐標(biāo)即可.【解析】【解答】解:如圖所示.
∵點(diǎn)A;B的坐標(biāo)分別為(1;0)、(4,0);
∴AB=3.
∵∠CAB=90°;BC=5;
∴AC=4.
∴A′C′=4.
∵點(diǎn)C′在直線y=2x-6上;
∴2x-6=4;解得x=5.
即OA′=5.
∴CC′=5-1=4.
∴S?BCC′B′=4×4=16(面積單位).
即線段BC掃過的面積為16面積單位.
故選:C.7、A【分析】【分析】根據(jù)容器內(nèi)的水勻速流出,可得相同時(shí)間內(nèi)流出的水相同,根據(jù)圓柱的直徑越長(zhǎng),等體積的圓柱的高就越低,可得答案.【解析】【解答】解:圓柱的直徑較長(zhǎng);圓柱的高較低,水流下降較慢;圓柱的直徑變長(zhǎng),圓柱的高變低,水流下降變慢;圓柱的直徑變短,圓柱的高變高,水流下降變快.
故選:A.8、B【分析】【分析】分別根據(jù)完全平方式、冪的乘方與積的乘方、同底數(shù)冪的除法及單項(xiàng)式乘單項(xiàng)式的知識(shí),判斷各選項(xiàng)求解即可.【解析】【解答】解:A、2x2?3x3=6x5;故本選項(xiàng)錯(cuò)誤;
B、(x3)n÷x2n=xn;故本選項(xiàng)正確;
C、(a+2b)2=a2+4ab+4b2;故本選項(xiàng)錯(cuò)誤;
D、(x-3y)2=x2-6xy+9y2;故本選項(xiàng)錯(cuò)誤.
故選B.9、D【分析】【解答】解:由平行四邊形的性質(zhì):①邊:平行四邊形的對(duì)邊相等.②角:平行四邊形的對(duì)角相等.③對(duì)角線:平行四邊形的對(duì)角線互相平分;可知選項(xiàng)D是正確的.
故選D.
【分析】根據(jù)平行四邊形的性質(zhì)逐項(xiàng)分析即可.二、填空題(共8題,共16分)10、略
【分析】【分析】根據(jù)題意,由多邊形的對(duì)角線性質(zhì),多邊形內(nèi)角和定理,分析可得答案.【解析】【解答】解:一個(gè)n邊形的內(nèi)角和是(n-2)×180°;
外角和是360°;由一個(gè)頂點(diǎn)出發(fā)可以畫(n-3)條對(duì)角線.
故答案為:(n-2)×180°,360°,(n-3).11、略
【分析】【解析】試題分析:由直線y=(2-5k)x+3k-2經(jīng)過原點(diǎn),則可把(0,0)代入函數(shù)解析式即可;直線與x軸交于點(diǎn)(-1,0),則可把(-1,0)代入函數(shù)解析式即可.由題意得:當(dāng)直線y=(2-5k)x+3k-2經(jīng)過原點(diǎn)時(shí),有解得當(dāng)直線與x軸交于點(diǎn)(-1,0)時(shí),有解得故答案為考點(diǎn):本題考查的是一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征【解析】【答案】12、略
【分析】試題分析:甲、乙兩組數(shù)據(jù)的平均數(shù)都是5,甲組數(shù)據(jù)的方差所以所以成績(jī)比較穩(wěn)定的是甲.考點(diǎn):方差的應(yīng)用.【解析】【答案】甲13、略
【分析】解:∵二次函數(shù)的解析式為y=x2+x+2=(x+)2+
∴拋物線的對(duì)稱軸為直線x=-
∵(-2,a)、(-1,b);(3,c);
∴點(diǎn)(3,c)離直線x=-最遠(yuǎn),(-1,b)離真相x=-最近;
而拋物線開口向上;
∴c>a>b;
故答案為c>a>b.
先根據(jù)二次函數(shù)的性質(zhì)得到拋物線的對(duì)稱軸為直線x=-然后比較三個(gè)點(diǎn)都直線x=-的遠(yuǎn)近得到a、b;c的大小關(guān)系.
題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式.【解析】c>a>b14、略
【分析】解:根據(jù)題意得:x鈮?0
且x+2鈮?0
解得:x鈮?0
.
故答案為x鈮?0
.
根據(jù)二次根式的性質(zhì)和分式的意義;被開方數(shù)大于或等于0
分母不等于0
可以求出x
的范圍.
本題考查了函數(shù)自變量的取值范圍問題;函數(shù)自變量的范圍一般從三個(gè)方面考慮:
(1)
當(dāng)函數(shù)表達(dá)式是整式時(shí);自變量可取全體實(shí)數(shù);
(2)
當(dāng)函數(shù)表達(dá)式是分式時(shí);考慮分式的分母不能為0
(3)
當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)非負(fù).【解析】x鈮?0
15、(1)
(2)y=3x+2
(3)
(4)15
(5)
(6)【分析】【分析】(1)
利用二次根式簡(jiǎn)化方法進(jìn)行計(jì)算,即可解答;(2)
根據(jù)平移的規(guī)律可直接求得答案;(3)
根據(jù)矩形的性質(zhì)求出隆脧ABC=90鈭?AO=OB
根據(jù)等邊三角形的性質(zhì)和判定求出AO
長(zhǎng),求出AC
根據(jù)勾股定理求出BC
即可;(4)
把P(a,鈭?3)
和Q(鈭?4,b)
代入y=x鈭?5
得a鈭?5=鈭?3鈭?4鈭?b=5
整體代入即可求解;(5)
設(shè)AC=x
可知AB=10鈭?x
再根據(jù)勾股定理即可得出結(jié)論;(6)
此題需要運(yùn)用極端原理求解:壟脵BP
最小時(shí),F(xiàn)D
重合,由折疊的性質(zhì)知:AF=PF
在Rt鈻?PFC
中,利用勾股定理可求得PC
的長(zhǎng),進(jìn)而可求得BP
的值,即BP
的最小值;壟脷BP
最大時(shí),EB
重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=4
即BP
的最大值為4
根據(jù)上述兩種情況即可得到BP
的取值范圍.【解答】解:(1)19=13
故答案為13
(2)隆脽y=3x
隆脿
將直線y=3x
沿著y
軸向上平移2
個(gè)單位所得直線的解析式為y=3x+2
故答案為y=3x+2
(3)隆脽
四邊形ABCD
是矩形,隆脿隆脧ABC=90鈭?AC=BDOA=OCOD=OB
隆脿OA=OB
隆脽隆脧AOB=60鈭?AB=4(cm)
隆脿鈻?AOB
是等邊三角形;
隆脿AO=4(cm)
隆脿AC=2AO=8(cm)
在Rt鈻?ABC
中,由勾股定理得:BC=AC2?AB2=82?42=43(cm)
故答案為43
(4)
把P(a,鈭?3)
和Q(鈭?4,b)
代入y=x鈭?5
得:a鈭?5=鈭?3鈭?4鈭?b=5
隆脿(a鈭?5)隆脕(b+4)=鈭?3隆脕(鈭?5)=15
故答案為15
(5)
設(shè)AC=x
隆脽AC+AB=18
隆脿AB=10鈭?x
隆脽
在Rt鈻?ABC
中,隆脧ACB=90鈭?
隆脿AC2+BC2=AB2
即x2+62=(18鈭?x)2
故答案為x2+62=(18鈭?x)2
(6)
如圖:壟脵
當(dāng)FD
重合時(shí);BP
的值最小;
根據(jù)折疊的性質(zhì)知:AF=PF=6
在Rt鈻?PFC
中,PF=6FC=4
則PC=25
隆脿BP=xmin=6鈭?25
壟脷
當(dāng)EB
重合時(shí);BP
的值最大;根據(jù)折疊的性質(zhì)即可得到AB=BP=4
即BP
的最大值為4
故答案為6鈭?25鈮?BP鈮?4
.【解析】(1)13
(2)y=3x+2
(3)43
(4)15
(5)x2+62=(18鈭?x)2
(6)6鈭?25鈮?BP鈮?4
16、略
【分析】【分析】此題主要考查了三角形內(nèi)切圓,理解內(nèi)心是角平分線的交點(diǎn)是關(guān)鍵.
由于BABC
都與隆脩O
相切,由切線長(zhǎng)定理知隆脧OBC隆脧OCB
分別是隆脧ABC隆脧ACB
的一半,由此可求得它們的度數(shù)和,再由三角形內(nèi)角和定理即可求得隆脧BOC
的度數(shù).【解答】解:隆脽
點(diǎn)O
是鈻?ABC
的內(nèi)心;
隆脿隆脧ABO=隆脧OBC=12隆脧ABC隆脧OCB=隆脧OCA=12隆脧ACB
隆脿隆脧OBC=25鈭?隆脧OCB=37.5鈭?
隆脿隆脧BOC=180鈭?鈭?隆脧OBC鈭?隆脧OCB=117.5鈭?
.
故答案是117.5鈭?
.【解析】117.5鈭?
17、略
【分析】【分析】分為三種情況:①OP=OD時(shí),②DO=DP時(shí),③OP=PD時(shí),根據(jù)點(diǎn)B的坐標(biāo),根據(jù)勾股定理和等腰三角形的性質(zhì)即可求出答案.【解析】【解答】解:∵B的坐標(biāo)是(10;4),四邊形OCBA是矩形;
∴OC=AB=4;
∵D為OA中點(diǎn);
∴OD=AD=5;
∵P在BC上;
∴P點(diǎn)的縱坐標(biāo)是4;
①
以O(shè)為圓心,以O(shè)D為半徑作弧,交BC于P,此時(shí)OP=OD=5,由勾股定理求出CP==3;即P的坐標(biāo)是(3,4);
②
以D為圓心;以O(shè)D為半徑作弧,交BC于P;P′,此時(shí)DP=OD=DP′=5;
由勾股定理求出DM=DN==3;即P的坐標(biāo)是(2,4),P′的坐標(biāo)是(8,4);
③作OD的垂直平分線交BC于P;此時(shí)OP=DP;
P的坐標(biāo)是(;4);
故答案為:(2,4)或(3,4)或(8,4)或(,4).三、判斷題(共5題,共10分)18、×【分析】【解析】試題分析:根據(jù)分式方程的定義即可判斷.=是關(guān)于y的一元一次方程考點(diǎn):本題考查的是分式方程的定義【解析】【答案】錯(cuò)19、√【分析】【解析】試題分析:根據(jù)菱形的性質(zhì)即可判斷.菱形的對(duì)角線互相垂直平分,本題正確.考點(diǎn):本題考查的是菱形的性質(zhì)【解析】【答案】對(duì)20、×【分析】【分析】根據(jù)平方根的定義進(jìn)行判斷.【解析】【解答】解:一個(gè)正數(shù)有兩個(gè)平方根;且互為相反數(shù),一個(gè)正數(shù)的平方只能是正數(shù);
負(fù)數(shù)沒有平方根;
0的平方為0;0的平方根為0;
綜上所述:平方數(shù)等于它的平方根的數(shù)只有1個(gè)0;原說法錯(cuò)誤.
故答案為:×.21、×【分析】【解析】試題分析:根據(jù)全等變換的特征分析即可。全等的兩圖形也可以由平移或翻折得到,故本題錯(cuò)誤??键c(diǎn):本題考查的是全等變換【解析】【答案】錯(cuò)22、A【分析】解:∵2x+1≠0中含有不等號(hào);
∴此式子是不等式.
故答案為:√.
【分析】根據(jù)不等式的定義進(jìn)行解答即可.四、證明題(共1題,共2分)23、略
【分析】【分析】(1)根據(jù)余角和補(bǔ)角的性質(zhì)易證得∠DAC=∠ECB;已知∠ADC=∠CEB=90°,AC=CB,根據(jù)全等三角形的判定AAS即可證明△ADC≌△CEB,根據(jù)各邊的相等關(guān)系即可得DE=AD+BE.
(2)同理可證得△ADC≌△CEB,再根據(jù)各邊的相等關(guān)系可得DE=AD-BE.【解析】【解答】(1)證明:∵AD⊥MN;BE⊥MN;
∴∠ADC=∠CEB=90°;
∴∠DAC+∠ACD=90°;
∵∠ACB=90°;
∴∠ACD+∠BCE=180°-90°=90°;
∴∠DAC=∠ECB;
在△ADC和△CEB中;∠ADC=∠CEB,∠DAC=∠ECB,AC=CB;
∴△ADC≌△CEB(AAS)①;(7分)
∴DC=EB;AD=CE;
∴DE=AD+BE.(9分)
(2)解:同理可得△ADC≌△CEB①;(11分)
∴AD=CE;CD=BE;
∴DE=AD-BE②.(14分)五、計(jì)算題(共3題,共6分)24、略
【分析】【分析】先根據(jù)二次根式有意義的條件列出關(guān)于x的不等式組,求出x的值,進(jìn)而得出y的值,代入代數(shù)式進(jìn)行計(jì)算即可.【解析】【解答】解:∵與有意義;
∴;解得x=2;
∴y=-3;
∴(2-3)4=1.25、略
【分析】【分析】根據(jù)<和=4,即可求出答案.【解析】【解答】解:∵4=;
<;
∴4<;
故答案為:<.26、略
【分析】【分析】(1)先把N點(diǎn)坐標(biāo)代入y=求出k得反比例函數(shù)解析式為y=;在利用反比例函數(shù)解析式確定M點(diǎn)的坐標(biāo)為(2,2),然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)觀察函數(shù)圖象得到當(dāng)x<-1或0<x<2時(shí),反比例函數(shù)圖象都在以此函數(shù)圖象上方,即反比例函數(shù)的值大于一次函數(shù)的值.【解析】【解答】解:(1)把N(-1,-4)代入y=得k=-1×(-4)=4;
所以反比例函數(shù)解析式為y=;
把M(2,m)代入y=得2m=4;解得m=2;
則M點(diǎn)的坐標(biāo)為(2;2);
把M(2,2),N(-1,-4)代入y=ax+b得,解得;
所以一次函數(shù)解析式為y=2x-2;
(2)x<-1或0<x<2.六、綜合題(共4題,共16分)27、略
【分析】【分析】(1)根據(jù)B點(diǎn)的橫坐標(biāo)為-8,代入中;得y=-2,得出B點(diǎn)的坐標(biāo),即可得出A點(diǎn)的坐標(biāo),再根據(jù)k=xy求出即可;
(2)根據(jù)S矩形DCNO=2mn=2k,S△DBO=,S△OEN=,即可得出k的值,進(jìn)而得出B,C點(diǎn)的坐標(biāo),再求出解析式即可.【解析】【解答】解:(1)∵D(-8;0);
∴B點(diǎn)的橫坐標(biāo)為-8,代入中;得y=-2.
∴B點(diǎn)坐標(biāo)為(-8;-2).
∵A;B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱;∴A(8,2).
∴k=xy=8×2=16;
(2)∵N(0;-n),B是CD的中點(diǎn),A;B、M、E四點(diǎn)均在雙曲線上;
∴mn=k,B(-2m,-);C(-2m,-n),E(-m,-n).
S矩形DCNO=2mn=2k,S△DBO=,S△OEN=;
∴S四邊形OBCE=S矩形DCNO-S△DBO-S△OEN=k=4.
∴k=4.
∵B(-2m,-)在雙曲線與直線上
∴得(舍去)
∴C(-4;-2),M(2,2).
設(shè)直線CM的解析式是y=ax+b;把C(-4,-2)和M(2,2)代入得:
解得.
∴直線CM的解析式是.28、略
【分析】【分析】(1)由于△ABC和△CDE都是直角三角形;故AC,CE可由勾股定理求得;
(2)若點(diǎn)C不在AE的連線上;根據(jù)三角形中任意兩邊之和>第三邊知,AC+CE>AE,故當(dāng)A;C、E三點(diǎn)共線時(shí),AC+CE的值最小;
(3)由(1)(2)的結(jié)果可作BD=12,過點(diǎn)B作AB⊥BD,過點(diǎn)D作ED⊥BD,使AB=2,ED=3,連接AE交BD于點(diǎn)C,則AE的長(zhǎng)即為代數(shù)式的最小值,然后構(gòu)造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性質(zhì)可求得AE的值.【解析】【解答】解:(1)+;
(2)當(dāng)A;C、E三點(diǎn)共線時(shí);AC+CE的值最??;
(3)如右圖所示,作BD=12,過點(diǎn)B作AB⊥BD,過點(diǎn)D作ED⊥BD,使AB=2,ED=3,連接AE交BD于點(diǎn)C,設(shè)BC=x,則AE的長(zhǎng)即為代數(shù)的最小值.
過點(diǎn)A作AF∥BD交ED的延長(zhǎng)線于點(diǎn)F;得矩形ABDF;
則AB=DF=2;AF=BD=12,EF=ED+DF=3+2=5;
所以AE===13;
即的最小值為13.29、略
【分析】【分析】作DF⊥AC于F,EH⊥AC于H,根據(jù)矩形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 肇慶學(xué)院《管理會(huì)計(jì)模擬實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 企業(yè)員工績(jī)效質(zhì)量個(gè)人貢獻(xiàn)度評(píng)價(jià)體系
- 保險(xiǎn)行業(yè)投資分析模板
- 20XX年度績(jī)效總結(jié)模板
- 房地產(chǎn)經(jīng)紀(jì)操作實(shí)務(wù)-2019年房地產(chǎn)經(jīng)紀(jì)人協(xié)理《房地產(chǎn)經(jīng)紀(jì)操作實(shí)務(wù)》真題匯編
- 人資行政崗位述職報(bào)告模板
- 有關(guān)保護(hù)環(huán)境的調(diào)查報(bào)告
- 二零二五版帶利息支付的商業(yè)匯票貼現(xiàn)合同樣本3篇
- 陜西省西安市部分學(xué)校2024-2025學(xué)年高一上學(xué)期第四次階段性檢測(cè)化學(xué)試卷(含答案)
- 二零二五年度高速公路鋼筋材料供應(yīng)協(xié)議3篇
- 《形勢(shì)與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測(cè)》真題卷及答案解析
- 橋梁監(jiān)測(cè)監(jiān)控實(shí)施方案
- 消防控制室值班人員崗位職責(zé)-五項(xiàng)制度
- 鋼結(jié)構(gòu)安裝施工培訓(xùn)
- 2024至2030年中國抗菌藥數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 太平洋保險(xiǎn)在線測(cè)評(píng)題
- 珠寶玉石居間合同范本
- 青少年人工智能編程水平測(cè)試二級(jí)-模擬真題01含答案
- 仁愛英語八年級(jí)下冊(cè)Unit-5-Topic-2單元測(cè)試
- DZ∕T 0291-2015 飾面石材礦產(chǎn)地質(zhì)勘查規(guī)范
評(píng)論
0/150
提交評(píng)論