2024年北師大新版高一數學下冊月考試卷含答案_第1頁
2024年北師大新版高一數學下冊月考試卷含答案_第2頁
2024年北師大新版高一數學下冊月考試卷含答案_第3頁
2024年北師大新版高一數學下冊月考試卷含答案_第4頁
2024年北師大新版高一數學下冊月考試卷含答案_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年北師大新版高一數學下冊月考試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四總分得分評卷人得分一、選擇題(共8題,共16分)1、等差數列{an}的前n項和為Sn,若S3=4,S6=10,則S9=()

A.16

B.18

C.12

D.24

2、圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k23、△ABC中,則最短邊的邊長等于()A.B.C.D.4、【題文】若a、b、c是常數,則“a>0且b2-4ac<0”是“對任意x∈R,有ax2+bx+c>0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件5、【題文】圓上的點到直線的距離的最大值是()A.B.C.D.6、【題文】設函數為奇函數,=()A.0B.1C.D.57、若奇函數f(x)在[1,3]為增函數,且有最小值7,則它在[﹣3,﹣1]上()A.是減函數,有最小值﹣7B.是增函數,有最小值﹣7C.是減函數,有最大值﹣7D.是增函數,有最大值﹣78、函數y=3x與y=3-x的圖象關于下列那種圖形對稱()A.x軸B.y軸C.直線y=xD.原點中心對稱評卷人得分二、填空題(共5題,共10分)9、已知函數f(x)是定義在實數集R上的奇函數,且在區(qū)間[0,+∞)上是單調遞增,若f2)+f(lgx-2)<0,則x的取值范圍為____.10、若函數f(x)=2x﹣在定義域(0,1]上是減函數,求實數a的取值范圍____11、如圖,在⊙O的內接五邊形ABCDE中,∠CAD=40°,則∠B+∠E=______°.12、在空間直角坐標系中,若△ABC的頂點坐標分別為A(-1,2,2),B(2,-2,3),C(4,-1,1)則△ABC的形狀為______.13、第4屆世界杯于1950年在巴西舉行,此后每4年舉行一次,那么將在俄羅斯舉行的2018年世界杯是第______屆.評卷人得分三、計算題(共9題,共18分)14、已知(a>b>0)是方程x2-5x+2=0的兩個實根,求的值.15、一組數據:13,15,18,16,21,13,13,11,10.它們的眾數是____,中位數是____.16、把一個六個面分別標有數字1;2,3,4,5,6有正方體骰子隨意擲一次,各個數字所在面朝上的機會均相等.

(1)若拋擲一次;則朝上的數字大于4的概率是多少?

(2)若連續(xù)拋擲兩次,第一次所得的數為m,第二次所得的數為n.把m、n作為點A的橫、縱坐標,那么點A(m、n)在函數y=3x-1的圖象上的概率又是多少?17、已知:x=,y=,則+=____.18、已知b<a<0,且a-b=3,ab=1;

(1)求a+b的值;

(2)求的值.19、(2005?蘭州校級自主招生)已知四邊形ABCD是正方形,且邊長為2,延長BC到E,使CE=-,并作正方形CEFG,(如圖),則△BDF的面積等于____.20、(2010?泉州校級自主招生)直角三角形ABC中,BC=AC,弧DEF圓心為A.已知兩陰影面積相等,那么AD:DB=____.21、如圖,DE∥BC,,F(xiàn)為BC上任一點,AF交DE于M,則S△BMF:S△AFD=____.22、計算:(lg﹣lg25)÷100.評卷人得分四、證明題(共2題,共6分)23、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.24、如圖,設△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.參考答案一、選擇題(共8題,共16分)1、B【分析】

由題意可得S3,S6-S3,S9-S6;成等差數列;

故2(S6-S3)=S3+(S9-S6);

代入數據可得2(10-4)=4+S9-10;

解之可得S9=18

故選B

【解析】【答案】由等差數列的性質可得S3,S6-S3,S9-S6;成等差數列,由已知數據代入計算可得.

2、D【分析】【解析】試題分析:根據題意可知,由于直線l1的傾斜角為鈍角,l2、l3為銳角,且l2的傾斜角大于l3的傾斜角,則根據正切函數圖像可知,k1<0,0,3<k2,故選D.考點:直線的斜率【解析】【答案】D3、A【分析】由題意角B為最小角,由正弦定理得故選A【解析】【答案】A4、A【分析】【解析】解:因為“a>0且b2-4ac<0”是“對任意x∈R,有ax2+bx+c>0”等價于a>0,且判別式小于零或者a=0,b=0,c>0的充分不必要條件,選A【解析】【答案】A5、B【分析】【解析】圓心為(1,1),半徑為1;圓心直線的距離為所以圓上的點到直線的距離的最大值是故選B【解析】【答案】B6、C【分析】【解析】本題考查奇函數的性質,賦值法及推理能力.

由函數為奇函數,且對任意都有所以令得即所以

所以則

故選C【解析】【答案】C7、D【分析】【解答】由奇函數的性質;

∵奇函數f(x)在[1;3]上為增函數;

∴奇函數f(x)在[﹣3;﹣1]上為增函數;

又奇函數f(x)在[1;3]上有最小值7;

∴奇函數f(x)在[﹣3;﹣1]上有最大值﹣7

故選D.

【分析】奇函數在對稱的區(qū)間上單調性相同,且橫坐標互為相反數時函數值也互為相反數,由題設知函數f(x)在[﹣3,﹣1]上是增函數,且﹣7是此區(qū)間上的最大值,故得答案.8、B【分析】解:在函數y=3x的圖象上取一點A(a,3a);

可得點A對應函數y=3-x圖象上的點A'(-a,3a)

∵A與A'關于y軸對稱;

∴由點A的任意性,得函數y=3x與y=3-x的圖象關于y軸對稱。

故選:B

在函數y=3x的圖象上任取一點A(a,3a),可得A關于y軸的對稱點A'恰好在y=3-x的圖象上;由此可得兩函數的圖象關于y軸對稱,得到本題的答案.

本題給出兩個指數函數的圖象,求它們關于哪種圖形對稱,著重考查了指數函數的圖象與性質和圖象對稱等知識,屬于基礎題.【解析】【答案】B二、填空題(共5題,共10分)9、略

【分析】

∵lg2?lg50+(lg5)2=(1-lg5)(1+lg5)+(lg5)2=1

∴f(lg2?lg50+(lg5)2)+f(lgx-2)<0;可化為f(1)+f(lgx-2)<0;

∵函數f(x)是定義在實數集R上的奇函數;

∴f(lgx-2)<f(-1)

∵函數f(x)是定義在實數集R上的奇函數;且在區(qū)間[0,+∞)上是單調遞增;

∴函數f(x)是在實數集R上單調遞增。

∴l(xiāng)gx-2<-1

∴l(xiāng)gx<1

∴0<x<10

故答案為:(0;10).

【解析】【答案】先將函數中的變量化簡;再確定函數f(x)是在實數集R上單調遞增,利用函數的單調性,即可求得x的取值范圍.

10、(﹣∞,﹣2]【分析】【解答】函數f(x)=2x﹣的導數f′(x)=2+

f(x)在定義域(0;1]上是減函數;

則有2+≤0在(0;1]恒成立;

則a≤﹣2x2在(0;1]恒成立;

由于﹣2x2在(0;1]遞減,則最小值為﹣2.

則a≤﹣2.

故答案為:(﹣∞;﹣2]

【分析】求出函數f(x)=2x﹣的導數f′(x),由已知可得f′(x)≤0在(0,1]恒成立,運用參數分離,求出右邊的最小值即可.11、略

【分析】解:如圖;連接CE;

∵五邊形ABCDE是圓內接五邊形;

∴四邊形ABCE是圓內接四邊形;

∴∠B+∠AEC=180°;

∵∠CED=∠CAD=40°;

∴∠B+∠E=180°+40°=220°.

故答案為:220.

連接CE;根據圓內接四邊形對角互補可得∠B+∠AEC=180°,再根據同弧所對的圓周角相等可得∠CED=∠CAD,然后求解即可.

本題考查了圓周角定理及圓內接四邊形的性質,同弧所對的圓周角相等的性質,熟記性質并作輔助線構造出圓內接四邊形是解題的關鍵.【解析】22012、略

【分析】解:在空間直角坐標系中;若△ABC的頂點坐標分別為A(-1,2,2),B(2,-2,3),C(4,-1,1);

∴AB==.

AC==

BC==

滿足:AB2+BC2=AC2.

三角形是直角三角形.

故答案為:直角三角形;

直接求出三角形的三邊的長度;然后判斷三角形的形狀.

本題考查空間距離的求法,三角形的形狀的判斷,勾股定理的應用,基本知識的考查.【解析】直角三角形13、略

【分析】解:設第n屆舉行世界杯與an年;由每4年舉行一次;

∵第4屆世界杯于1950年在巴西舉行;

∴2018=1950+4(n-4)

解得n=21.

故答案為:21.

由題意可得舉行世界杯的年份構成等差數列;根據等差數列的通項公式可求得2018年俄羅斯是第21屆世界杯.

考查學生閱讀能力和從實際生活中抽象出數學模型,然后解模求得結果,難點從題意構造等差數列,把實際問題轉化為數列問題,屬中檔題.【解析】21三、計算題(共9題,共18分)14、略

【分析】【分析】先把方程的兩根代入程x2-5x+2=0,根據根與系數的關系得出+、的值,然后再代入求的值即可.【解析】【解答】解:∵是方程x2-5x+2=0的兩實根;

∴a-5+2=0;

∴b-5+2=0,+=5,=2.

∴原式=[]÷+

=+=+=2?=2?=515、略

【分析】【分析】本題考查了眾數和中位數的定義,一組數據中出現(xiàn)次數最多的數據叫做眾數;將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.【解析】【解答】解:13出現(xiàn)的次數最多;故眾數是13;

按照從小到大的順序排列為10;11,13,13,13,15,16,18,21;

∴中位數是13;

故答案為13、13.16、略

【分析】【分析】(1)讓大于4的數的個數除以數的總數即為所求的概率;

(2)列舉出所有情況,看點A(m、n)在函數y=3x-1的圖象上的情況數占總情況數的多少即可.【解析】【解答】解:(1)依題意可知:隨意擲一次正方體骰子,面朝上的數可能出現(xiàn)的結果有1、2、3、4、5、6共6種,而且它們出現(xiàn)的可能性相等.滿足數字大于4(記為事件A)的有2種.所以P(A)=

(2)依題意列表分析如下:

。第二次n第

m

1234561(11)(12)(13)(14)(15)(16)(16)2(21)(22)(23)(24)(25)(26)(26)3(31)(32)(33)(34)(35)(36)(36)4(41)(42)(43)(44)(45)(46)(46)5(51)(52)(53)(54)(55)(56)(56)6(61)(62)(63)(64)(65)(66)(66)由表可以看出;可能出現(xiàn)的結果有36種,而且它們出現(xiàn)的可能性相等.所得點A(記為事件A)的有(12)和(25)兩種情況,所以在函數y=3x-1的圖象上的概率為

P(A)==.17、略

【分析】【分析】直接把x,y的值代入代數式,根據分母有理化進行計算,求出代數式的值.【解析】【解答】解:+=+;

=+;

=+;

=+;

=.

故答案為:.18、略

【分析】【分析】(1)要求a+b,可以首先求得(a+b)2的值,利用完全平方公式中(a+b)2與(a-b)2之間的關系;即可求解;

(2)根據===,代入即可求解.【解析】【解答】解:(1)∵b<a<0

∴a+b<0(1分)

又∵(a+b)2=(a-b)2+4ab=13

∴a+b=±

∵b<a<0

∴a+b=-

(2)∵a-b=3

∴(a-b)2=a2+b2-2ab=9

∴a2+b2=9+2ab=9+2=11

∴====-×3×11=-33.19、略

【分析】【分析】根據正方形的性質可知三角形BDC為等腰直角三角形,由正方形的邊長為2,表示出三角形BDC的面積,四邊形CDFE為直角梯形,上底下底分別為小大正方形的邊長,高為小正方形的邊長,利用梯形的面積公式表示出梯形CDFE的面積,而三角形BEF為直角三角形,直角邊為小正方形的邊長及大小邊長之和,利用三角形的面積公式表示出三角形BEF的面積,發(fā)現(xiàn)四邊形CDEF的面積與三角形EFB的面積相等,所求△BDF的面積等于三角形BDC的面積加上四邊形CDFE的面積減去△EFB的面積即為三角形BDC的面積,進而得到所求的面積.【解析】【解答】解:∵四邊形ABCD是正方形;邊長為2;

∴BC=DC=2;且△BCD為等腰直角三角形;

∴△BDC的面積=BC?CD=×2×2=2;

又∵正方形CEFG;及正方形ABCD;

∴EF=CE;BC=CD;

由四邊形CDFE的面積是(EF+CD)?EC,△EFB的面積是(BC+CE)?EF;

∴四邊形CDFE的面積=△EFB的面積;

∴△BDF的面積=△BDC的面積+四邊形CDFE的面積-△EFB的面積=△BDC的面積=2.

故答案為:2.20、略

【分析】【分析】若兩個陰影部分的面積相等,那么△ABC和扇形ADF的面積就相等,可分別表示出兩者的面積,然后列等式求出AD與DB的比.【解析】【解答】解:設AB=BC=a則AB=a;

∵兩陰影面積相等,∴SABC=S扇形ADF

即a2=AD2?π;

∴AD=;

∴AD:DB=AD:(AB-AD)=;

故答案為.21、略

【分析】【分析】作DG⊥BC,AH⊥BC,則由題中條件可小求出△BDF與△ABF的比值,進而可得出結論.【解析】【解答】解:分別過點D;A作BC的垂線;交BC于點G、H;

∵DE∥BC;

則S△BDF=S△BFM=?BF?DG;

S△ABF=?BF?AH;

又,即=;

∴====;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論