版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年北師大版一年級語文下冊月考試卷620考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共8題,共16分)1、下面書寫筆順不正確的是()。A.B.C.D.2、如圖;四邊形ABCD內(nèi)接于⊙O,DA=DC,∠CBE=50°,則∠DAC的大小為()
A.130°B.100°C.65°D.50°3、如圖;已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結(jié)論:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正確的是()
A.①③B.②③C.①④D.②④4、下面筆順規(guī)則是“先外后內(nèi)再封口”的字是()A.國B.見C.長D.花5、新中國成立以后,我國的現(xiàn)代科技事業(yè)得到了全面的發(fā)展,尤其是改革開放以來,科學(xué)技術(shù)得到了飛速發(fā)展。下列技術(shù)成果中體現(xiàn)了我國航空航天科技水平的是()A.袁隆平選育出雜交水稻新品種“南優(yōu)二號”B.世界上唯一實現(xiàn)工業(yè)化生產(chǎn)微晶鋼(超級鋼)C.“神舟”系列載人飛船D.建造世界首個全超導(dǎo)核聚變實驗裝置“人造太陽”6、生產(chǎn)工具作為生產(chǎn)力的標(biāo)志,它的進步推動了人類社會不斷向前發(fā)展。依據(jù)生產(chǎn)工具的變革,人類社會歷史發(fā)展先后經(jīng)歷了石器時代、青銅時代、鐵器時代、蒸汽時代、電氣時代、信息時代。下列技術(shù)事件發(fā)生在電氣時代的是()A.蔡倫改進造紙術(shù)B.電子計算機ENIAC誕生C.奧托發(fā)明內(nèi)燃機D.富爾頓發(fā)明蒸汽輪船7、技術(shù)是指從人類需求出發(fā),秉持定的價值理念,運用各種物質(zhì)及裝置、工藝方法、知識技能與經(jīng)驗等,實現(xiàn)具有一定使用價值的創(chuàng)造性實踐活動。關(guān)于技術(shù)的評述以下不正確的是()A.技術(shù)是人類物質(zhì)財富和精神財富的積累形式之一B.技術(shù)只是工具和手段,不承載特殊的倫理和道德問題C.技術(shù)是人類文明的重要組成部分,是社會生產(chǎn)力水平的重要標(biāo)志之一D.技術(shù)日益成為引導(dǎo)社會變化,塑造社會變化,應(yīng)對社會變化的重要因素8、欹器是我國古代勞動人民智慧的結(jié)晶,灌水過程中,容器方向大體有()種變化。A.1B.2C.3D.4評卷人得分二、填空題(共9題,共18分)9、讀拼音;寫詞語。
九月登高過chóngyáng____;
十月滿園júzi____黃。10、瓦共____畫,門共____畫。11、填一填。
在《自選商場》的生詞里,____、____、____是食物,____、____、____是生活用品,____、____、____是學(xué)習(xí)用品。12、讀拼音,寫漢字。xìnfēnɡsònɡ____________13、寫一寫。
口+鳥=____;
艸+早=____;
幾+木=____;14、寫反義詞。
陰____短____黑____15、看圖寫出聲母。
。______________16、拼一拼;寫一寫。
。kě_______以yǐdōngxī_______dōng_______北běixī_______南nán17、把下列的音節(jié)補充完整。
。棉_______ián燕y_______然_______án瓢p_______碧_______ì評卷人得分三、解答題(共9題,共18分)18、計算:|﹣7|﹣(1﹣π)0+(13
)﹣1.19、如圖;在△ABC中,∠A>∠B.
(1)作邊AB的垂直平分線DE;與AB,BC分別相交于點D,E(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下;連接AE,若∠B=50°,求∠AEC的度數(shù).
20、如圖所示;已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC;求∠ADC的度數(shù).
21、如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ax+b交x軸于A(1;0),B(3,0)兩點,點P是拋物線上在第一象限內(nèi)的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當(dāng)點P是線段BC的中點時;求點P的坐標(biāo);
(3)在(2)的條件下;求sin∠OCB的值.
22、如圖,在平面直角坐標(biāo)系中,O為原點,四邊形ABCO是矩形,點A,C的坐標(biāo)分別是A(0,2)和C(23
;0),點D是對角線AC上一動點(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點B的坐標(biāo)為(23
;2);
(2)是否存在這樣的點D;使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:DEDB=33
;
②設(shè)AD=x;矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
23、如圖所示;已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC;求∠ADC的度數(shù).
24、某校為了解九年級學(xué)生的體重情況;隨機抽取了九年級部分學(xué)生進行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的統(tǒng)計圖表,如圖表所示,請根據(jù)圖表信息回答下列問題:
體重頻數(shù)分布表。
。組邊體重(千克)人數(shù)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016
(1)填空:①m=______(直接寫出結(jié)果);
②在扇形統(tǒng)計圖中;C組所在扇形的圓心角的度數(shù)等于______度;
(2)如果該校九年級有1000名學(xué)生;請估算九年級體重低于60千克的學(xué)生大約有多少人?
25、如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ax+b交x軸于A(1;0),B(3,0)兩點,點P是拋物線上在第一象限內(nèi)的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當(dāng)點P是線段BC的中點時;求點P的坐標(biāo);
(3)在(2)的條件下;求sin∠OCB的值.
26、如圖,AB是⊙O的直徑,AB=43
;點E為線段OB上一點(不與O,B重合),作CE⊥OB,交⊙O于點C,垂足為點E,作直徑CD,過點C的切線交DB的延長線于點P,AF⊥PC于點F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當(dāng)CFCP=34
時,求劣弧BC
的長度(結(jié)果保留π)
評卷人得分四、翻譯(共2題,共8分)27、讀詩《靜夜思》,解釋詩句的意思。(1)、床前明月光____(2)、低頭思故鄉(xiāng)____28、讀詩《靜夜思》,寫出下列詩句的意思。(1)、疑是地上霜____(2)、舉頭望明月____評卷人得分五、問答題(共3題,共21分)29、請寫出《西游記》中的任意五個人物。30、讀一讀;橫線上的話說明了什么?
公園里的菊花好看極了。黃的,白的,淡綠的,紫紅的,一朵朵,一叢叢,一片片,____。31、閱讀課文《這個辦法好》片段;回答問題。
這個辦法好。
毛澤東七歲的時候;常和小伙伴們到山上去放牛,砍柴,撿果子。
有一回;他想:怎樣能放好牛,又有多砍些柴,還能撿些果子呢?他想出了一個辦法,把大家分成三個小組:一組放牛,一組砍柴,一級撿果子。
天快黑了;放牛的把牛喂得飽飽的,砍柴的背回了許多柴,撿果子的撿了滿籃的野果子。
毛澤東把柴和果子分成八份;每人一份。大家牽上牛,背上柴,提上籃子,高高興興地回家了。
毛澤東想出的好辦法是?評卷人得分六、默寫(共4題,共8分)32、默寫古詩《靜夜思》。
靜夜思。
____;
____。
____;
____。33、默寫古詩;并加上標(biāo)點。
《春曉》
____
____
____
____34、默寫古詩;并加上標(biāo)點。
村居。
____
____
____
____35、默寫古詩。
靜夜思。
____;
____;
____;
____。參考答案一、選擇題(共8題,共16分)1、B【分析】【分析】字母a的寫法是先寫左半圓;然后寫豎彎,故選B。
【點評】本題考查三個單韻母的正確寫法。2、C【分析】先根據(jù)補角的性質(zhì)求出∠ABC的度數(shù),再由圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),由等腰三角形的性質(zhì)求得∠DAC的度數(shù).【解析】解:∵∠CBE=50°;
∴∠ABC=180°﹣∠CBE=180°﹣50°=130°;
∵四邊形ABCD為⊙O的內(nèi)接四邊形;
∴∠D=180°﹣∠ABC=180°﹣130°=50°;
∵DA=DC;
∴∠DAC=180°?∠D2=
65°;
故選:C.3、C【分析】由△AFD≌△AFB,即可推出S△ABF=S△ADF,故①正確,由BE=EC=12
BC=12
AD,AD∥EC,推出ECAD=CFAF=EFDF=12
,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③錯誤④正確,由此即可判斷.【解析】解:∵四邊形ABCD是正方形;
∴AD∥CB;AD=BC=AB,∠FAD=∠FAB;
在△AFD和△AFB中;
AF=AF∠FAD=∠FABAD=AB
;
∴△AFD≌△AFB;
∴S△ABF=S△ADF;故①正確;
∵BE=EC=12
BC=12
AD;AD∥EC;
∴ECAD=CFAF=EFDF=12
;
∴S△CDF=2S△CEF;S△ADF=4S△CEF,S△ADF=2S△CDF;
故②③錯誤④正確;
故選:C.
4、A【分析】本題考查了學(xué)生對于所學(xué)漢字的筆順掌握情況,根據(jù)課內(nèi)所學(xué)完成?!窘馕觥緼.“國”的筆順規(guī)則:豎、橫折、橫、橫、豎、橫、點、橫,筆順規(guī)則是先外后內(nèi)再封口。B.“見”的筆順:豎、橫折、撇、豎彎鉤。C.“長”的筆順:撇、橫、豎提、捺。D.“花”的筆順:橫、豎、豎、撇、豎、撇、豎彎鉤。故選:A。5、C【分析】本題考查“科學(xué)與技術(shù)的聯(lián)系與區(qū)別”??茖W(xué)是對各種事實和現(xiàn)象進行觀察、分類、歸納、演繹、分析、推理、計算和實驗,從而發(fā)現(xiàn)規(guī)律,并予以驗證和公式化的知識體系。側(cè)重認(rèn)識自然,力求有所發(fā)現(xiàn),回答:“是什么為什么”。技術(shù)則是人類為滿足自身的需求和愿望對大自然進行的改造。科學(xué)側(cè)重認(rèn)知,技術(shù)側(cè)重實踐改進,側(cè)重利用和合理地改造自然,力求有所發(fā)明,回答:“怎么辦”?!窘馕觥拷猓骸吧裰邸毕盗休d人飛船體現(xiàn)了我國航空航天科技水平,所以選項C符合題意。故選:C。6、C【分析】生產(chǎn)工具作為生產(chǎn)力的標(biāo)志,它的進步推動了人類社會不斷向前發(fā)展。依據(jù)生產(chǎn)工具的變革,人類社會歷史發(fā)展先后經(jīng)歷了石器時代、青銅時代、鐵器時代、蒸汽時代、電氣時代、信息時代。【解析】解:蔡倫改進造紙術(shù)屬于青銅時代,電子計算機ENIAC誕生屬于信息時代,富爾頓發(fā)明蒸汽輪船屬于蒸汽時代,所以奧托發(fā)明內(nèi)燃機屬于電氣時代。故選:C。7、B【分析】本題考查技術(shù)的歷史?!窘馕觥考夹g(shù)不只是工具和手段,還承載特殊的倫理和道德問題,B錯誤。故選:B。8、C【分析】本題考查欹器的原理和使用?!窘馕觥快テ骺罩鴷r傾斜,盛水適中又端正,盛滿了水便會整個倒翻過來,水流盡時,它又像開始那樣傾斜,所以有3種變化。故選:C。二、填空題(共9題,共18分)9、重陽橘子【分析】【分析】考查學(xué)生對拼音的掌握;根據(jù)拼音;這句話是:九月登高過重陽,十月滿園橘子黃。
【點評】學(xué)生應(yīng)重點學(xué)會掌握拼音,這類題型常考查。10、43【分析】【分析】考查學(xué)生對生字筆畫的掌握。瓦共4畫;門共3畫。
【點評】考查學(xué)生對生字筆畫的掌握,學(xué)生要會辨認(rèn)。11、面包牛奶火腿腸牙膏毛巾洗衣服鉛筆尺子作業(yè)本【分析】【分析】這類題目是考查學(xué)生對課文內(nèi)容的掌握。面包;牛奶、火腿腸是食物;牙膏、毛巾、洗衣服是生活用品,鉛筆、尺子、作業(yè)本是學(xué)習(xí)用品。
【點評】考查學(xué)生對課文內(nèi)容的掌握,學(xué)生要掌握詞語的書寫。12、信封送【分析】【分析】考查學(xué)生對漢字的掌握;應(yīng)注意正確標(biāo)調(diào)。信封,裝信件的袋子。送,送給。
【點評】本題考查學(xué)生對拼音的熟悉程度,學(xué)生應(yīng)該掌握。13、鳴草朵【分析】【分析】這類題目是考查學(xué)生對字形的掌握???鳥=鳴;幾+木=朵;艸+早=草。
【點評】考查學(xué)生對字形的掌握,學(xué)生要學(xué)會拼字。14、陽長白【分析】【分析】陰指的是陰暗的意思;本課中陽指的是明亮的意思,一個陰暗一個明亮正好構(gòu)成反義詞;短指的是尺寸小的含義,長則指的是尺寸大的意思,二者構(gòu)成反義詞;白,是指白色,黑則指的是黑色的意思,二者構(gòu)成反義結(jié)構(gòu)。
【點評】此題考查學(xué)生對詞性及詞義的判斷感知能力。15、略
【分析】本題考查了學(xué)生對于聲母的掌握,完成本題較簡單,認(rèn)真觀察所給圖片的特點,結(jié)合對聲母的字形及讀音特點填空?!窘馕觥繄D一:一位小朋友正在潑水,所以應(yīng)是聲母“p”;圖二:一位小朋友正在聽廣播,所以應(yīng)是聲母“b”。故答案為:bp16、略
【分析】考查了看拼音寫詞語,根據(jù)所學(xué)漢語拼音知識進行拼讀寫出相應(yīng)的漢字即可。拼讀時要注意所給音節(jié)的聲母、韻母及聲調(diào)。【解析】故答案為:可東西東西17、略
【分析】考查了漢字讀音,注意平翹舌和聲調(diào)的掌握情況,字音是和詞義聯(lián)系起來的,也可結(jié)合詞義來辨析?!窘馕觥抗蚀鸢笧椋簃ànriáob三、解答題(共9題,共18分)18、略
【分析】直接利用絕對值的性質(zhì)以及零指數(shù)冪的性質(zhì)和負(fù)整數(shù)指數(shù)冪的性質(zhì)分別化簡求出答案.【解析】解:原式=7﹣1+3
=9.19、略
【分析】(1)根據(jù)題意作出圖形即可;
(2)由于DE是AB的垂直平分線,得到AE=BE,根據(jù)等腰三角形的性質(zhì)得到∠EAB=∠B=50°,由三角形的外角的性質(zhì)即可得到結(jié)論.【解析】解:(1)如圖所示;
(2)∵DE是AB的垂直平分線;
∴AE=BE;
∴∠EAB=∠B=50°;
∴∠AEC=∠EAB+∠B=100°.
20、略
【分析】(1)連結(jié)DB;DF.根據(jù)菱形四邊相等得出AB=AD=FA;再利用SAS證明△BAD≌△FAD,得出DB=DF,那么D在線段BF的垂直平分線上,又AB=AF,即A在線段BF的垂直平分線上,進而證明AD⊥BF;
(2)設(shè)AD⊥BF于H,作DG⊥BC于G,證明DG=12
CD.在直角△CDG中得出∠C=30°,再根據(jù)平行線的性質(zhì)即可求出∠ADC=180°﹣∠C=150°.【解析】(1)證明:如圖;連結(jié)DB;DF.
∵四邊形ABCD;ADEF都是菱形;
∴AB=BC=CD=DA;AD=DE=EF=FA.
在△BAD與△FAD中;
AB=AF∠BAD=∠FADAD=AD
;
∴△BAD≌△FAD;
∴DB=DF;
∴D在線段BF的垂直平分線上;
∵AB=AF;
∴A在線段BF的垂直平分線上;
∴AD是線段BF的垂直平分線;
∴AD⊥BF;
解法二:∵四邊形ABCD;ADEF都是菱形;
∴AB=BC=CD=DA;AD=DE=EF=FA.
∴AB=AF;∵∠BAD=∠FAD;
∴AD⊥BF(等腰三角形三線合一);
(2)如圖;設(shè)AD⊥BF于H,作DG⊥BC于G,則四邊形BGDH是矩形;
∴DG=BH=12
BF.
∵BF=BC;BC=CD;
∴DG=12
CD.
在直角△CDG中,∵∠CGD=90°,DG=12
CD;
∴∠C=30°;
∵BC∥AD;
∴∠ADC=180°﹣∠C=150°.
21、略
【分析】(1)將點A、B代入拋物線y=﹣x2+ax+b,解得a,b可得解析式;
(2)由C點橫坐標(biāo)為0可得P點橫坐標(biāo);將P點橫坐標(biāo)代入(1)中拋物線解析式,易得P點坐標(biāo);
(3)由P點的坐標(biāo)可得C點坐標(biāo),由B、C的坐標(biāo),利用勾股定理可得BC長,利用sin∠OCB=OBBC
可得結(jié)果.【解析】解:(1)將點A、B代入拋物線y=﹣x2+ax+b可得;
0=?12+a+b0=?32+3a+b
;
解得,a=4,b=﹣3;
∴拋物線的解析式為:y=﹣x2+4x﹣3;
(2)∵點C在y軸上;
所以C點橫坐標(biāo)x=0;
∵點P是線段BC的中點;
∴點P橫坐標(biāo)xP=0+32=32
;
∵點P在拋物線y=﹣x2+4x﹣3上;
∴yP=?(32)2+4×32?
3=34
;
∴點P的坐標(biāo)為(32
,34
);
(3)∵點P的坐標(biāo)為(32
,34
);點P是線段BC的中點;
∴點C的縱坐標(biāo)為2×34?
0=32
;
∴點C的坐標(biāo)為(0,32
);
∴BC=(32)2+32=352
;
∴sin∠OCB=OBBC=3352=255
.22、略
【分析】(1)求出AB;BC的長即可解決問題;
(2)存在.先推出∠ACO=30°;∠ACD=60°由△DEC是等腰三角形,觀察圖象可知,只有ED=EC,∠DCE=∠EDC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等邊三角形,推出DC=BC=2,由此即可解決問題;
(3)①先表示出DN;BM,再判斷出△BMD∽△DNE,即可得出結(jié)論;
②作DH⊥AB于H.想辦法用x表示BD、DE的長,構(gòu)建二次函數(shù)即可解決問題;【解析】解:(1)∵四邊形AOCB是矩形;
∴BC=OA=2,OC=AB=23
;∠BCO=∠BAO=90°;
∴B(23
;2).
故答案為(23
;2).
(2)存在.理由如下:
∵OA=2,OC=23
;
∵tan∠ACO=AOOC=33
;
∴∠ACO=30°;∠ACB=60°
①如圖1中;當(dāng)E在線段CO上時,△DEC是等腰三角形,觀察圖象可知,只有ED=EC;
∴∠DCE=∠EDC=30°;
∴∠DBC=∠BCD=60°;
∴△DBC是等邊三角形;
∴DC=BC=2;
在Rt△AOC中;∵∠ACO=30°,OA=2;
∴AC=2AO=4;
∴AD=AC﹣CD=4﹣2=2.
∴當(dāng)AD=2時;△DEC是等腰三角形.
②如圖2中;當(dāng)E在OC的延長線上時,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°;
∴∠ABD=∠ADB=75°;
∴AB=AD=23
;
綜上所述,滿足條件的AD的值為2或23
.
(3)①如圖1;
過點D作MN⊥AB交AB于M;交OC于N;
∵A(0,2)和C(23
;0);
∴直線AC的解析式為y=?33
x+2;
設(shè)D(a,?33
a+2);
∴DN=?33
a+2,BM=23?
a
∵∠BDE=90°;
∴∠BDM+∠NDE=90°;∠BDM+∠DBM=90°;
∴∠DBM=∠EDN;∵∠BMD=∠DNE=90°;
∴△BMD∽△DNE;
∴DEBD=DNBM=?33a+223?a=33
.
②如圖2中;作DH⊥AB于H.
在Rt△ADH中;∵AD=x,∠DAH=∠ACO=30°;
∴DH=12
AD=12
x,AH=AD2?DH2=32
x;
∴BH=23?32
x;
在Rt△BDH中,BD=BH2+DH2=(12x)2+(23?32x)2
;
∴DE=33
BD=33
?(12x)2+(23?32x)2
;
∴矩形BDEF的面積為y=33
[(12x)2+(23?32x)2
]2=33
(x2﹣6x+12);
即y=33
x2﹣23
x+43
;
∴y=33
(x﹣3)2+3
;
∵33>
0;
∴x=3時,y有最小值3
.
23、略
【分析】(1)連結(jié)DB;DF.根據(jù)菱形四邊相等得出AB=AD=FA;再利用SAS證明△BAD≌△FAD,得出DB=DF,那么D在線段BF的垂直平分線上,又AB=AF,即A在線段BF的垂直平分線上,進而證明AD⊥BF;
(2)設(shè)AD⊥BF于H,作DG⊥BC于G,證明DG=12
CD.在直角△CDG中得出∠C=30°,再根據(jù)平行線的性質(zhì)即可求出∠ADC=180°﹣∠C=150°.【解析】(1)證明:如圖;連結(jié)DB;DF.
∵四邊形ABCD;ADEF都是菱形;
∴AB=BC=CD=DA;AD=DE=EF=FA.
在△BAD與△FAD中;
AB=AF∠BAD=∠FADAD=AD
;
∴△BAD≌△FAD;
∴DB=DF;
∴D在線段BF的垂直平分線上;
∵AB=AF;
∴A在線段BF的垂直平分線上;
∴AD是線段BF的垂直平分線;
∴AD⊥BF;
解法二:∵四邊形ABCD;ADEF都是菱形;
∴AB=BC=CD=DA;AD=DE=EF=FA.
∴AB=AF;∵∠BAD=∠FAD;
∴AD⊥BF(等腰三角形三線合一);
(2)如圖;設(shè)AD⊥BF于H,作DG⊥BC于G,則四邊形BGDH是矩形;
∴DG=BH=12
BF.
∵BF=BC;BC=CD;
∴DG=12
CD.
在直角△CDG中,∵∠CGD=90°,DG=12
CD;
∴∠C=30°;
∵BC∥AD;
∴∠ADC=180°﹣∠C=150°.
24、略
【分析】(1)①根據(jù)D組的人數(shù)及百分比進行計算即可得到m的值;②根據(jù)C組的百分比即可得到所在扇形的圓心角的度數(shù);
(2)根據(jù)體重低于60千克的學(xué)生的百分比乘上九年級學(xué)生總數(shù),即可得到九年級體重低于60千克的學(xué)生數(shù)量.【解析】解:(1)①調(diào)查的人數(shù)為:40÷20%=200(人);
∴m=200﹣12﹣80﹣40﹣16=52;
②C組所在扇形的圓心角的度數(shù)為80200×
360°=144°;
故答案為:52;144;
(2)九年級體重低于60千克的學(xué)生大約有12+52+80200×
1000=720(人).25、略
【分析】(1)將點A、B代入拋物線y=﹣x2+ax+b,解得a,b可得解析式;
(2)由C點橫坐標(biāo)為0可得P點橫坐標(biāo);將P點橫坐標(biāo)代入(1)中拋物線解析式,易得P點坐標(biāo);
(3)由P點的坐標(biāo)可得C點坐標(biāo),由B、C的坐標(biāo),利用勾股定理可得BC長,利用sin∠OCB=OBBC
可得結(jié)果.【解析】解:(1)將點A、B代入拋物線y=﹣x2+ax+b可得;
0=?12+a+b0=?32+3a+b
;
解得,a=4,b=﹣3;
∴拋物線的解析式為:y=﹣x2+4x﹣3;
(2)∵點C在y軸上;
所以C點橫坐標(biāo)x=0;
∵點P是線段BC的中點;
∴點P橫坐標(biāo)xP=0+32=32
;
∵點P在拋物線y=﹣x2+4x﹣3上;
∴yP=?(32)2+4×32?
3=34
;
∴點P的坐標(biāo)為(32
,34
);
(3)∵點P的坐標(biāo)為(32
,34
);點P是線段BC的中點;
∴點C的縱坐標(biāo)為2×34?
0=32
;
∴點C的坐標(biāo)為(0,32
);
∴BC=(32)2+32=352
;
∴sin∠OCB=OBBC=3352=255
.26、略
【分析】(1)根據(jù)等角的余角相等證明即可;
(2)欲證明CF=CE;只要證明△ACF≌△ACE即可;
(3)作BM⊥PF于M.則CE=CM=CF,設(shè)CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性質(zhì)求出BM,求出tan∠BCM的值即可解決問題;【解析】(1)證明:∵OC=OB;
∴∠OCB=∠OBC;
∵PF是⊙O的切線;CE⊥AB;
∴∠OCP=∠CEB=90°;
∴∠PCB+∠OCB=90°;∠BCE+∠OBC=90°;
∴∠BCE=∠BCP;
∴BC平分∠PCE.
(2)證明:連接AC.
∵AB是直徑;
∴∠ACB=90°;
∴∠BCP+∠ACF=90°;∠ACE+∠BCE=90°;
∵∠BCP=∠BCE;
∴∠ACF=∠ACE;
∵∠F=∠AEC=90°;AC=AC;
∴△ACF≌△ACE;
∴CF=CE.
解法二:證明:連接AC.
∵OA=OC
∴∠BAC=∠ACO;
∵CD平行AF;
∴∠FAC=∠ACD;
∴∠FAC=∠CAO;∵CF⊥AF,CE⊥AB;
∴CF=CE.
(3)解:作BM⊥PF于M.則CE=CM=CF;設(shè)CE=CM=CF=3a,PC=4a,PM=a;
∵∠MCB+∠P=90°;∠P+∠PBM=90°;
∴∠MCB=∠PBM;
∵CD是直徑;BM⊥PC;
∴∠CMB=∠BMP=90°;
∴△BMC∽△PMB;
∴BMPM=CMBM
;
∴BM2=CM?PM=3a2;
∴BM=3
a;
∴tan∠BCM=BMCM=33
;
∴∠BCM=30°;
∴∠OCB=∠OBC=∠BOC=60°;
∴BC
的長=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甲苯精餾塔課程設(shè)計結(jié)論
- 網(wǎng)絡(luò)營銷微信課程設(shè)計
- 醫(yī)院設(shè)備管理制度
- 波浪能發(fā)電裝置課程設(shè)計
- 舞蹈機構(gòu)古典舞課程設(shè)計
- 用天正暖通進行課程設(shè)計
- 會計師工作總結(jié)細(xì)心核算確保賬目準(zhǔn)確無誤
- 數(shù)字時代品牌營銷的新趨勢計劃
- 日常教學(xué)反思與總結(jié)計劃
- 裝修合同簡易版
- 日拱一卒行穩(wěn)致遠
- 培訓(xùn)內(nèi)驅(qū)力的課件
- 管理后臺策劃方案
- 人防、物防、技防工作措施
- 市場部培訓(xùn)課程課件
- 八年級歷史上冊論述題匯總
- 資產(chǎn)評估學(xué)教程(第八版)習(xí)題及答案 喬志敏
- 提高留置針規(guī)范使用率
- 垃圾清運服務(wù)投標(biāo)方案(技術(shù)方案)
- 《民俗旅游學(xué)》教學(xué)大綱(含課程思政元素)
- 人教版小學(xué)三年級上學(xué)期期末數(shù)學(xué)試卷(及答案)
評論
0/150
提交評論