2025年華師大版高三數(shù)學(xué)下冊階段測試試卷_第1頁
2025年華師大版高三數(shù)學(xué)下冊階段測試試卷_第2頁
2025年華師大版高三數(shù)學(xué)下冊階段測試試卷_第3頁
2025年華師大版高三數(shù)學(xué)下冊階段測試試卷_第4頁
2025年華師大版高三數(shù)學(xué)下冊階段測試試卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年華師大版高三數(shù)學(xué)下冊階段測試試卷592考試試卷考試范圍:全部知識點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共9題,共18分)1、關(guān)于x的不等式的解集是()A.[5a,-2a)B.(-∞,5a]∪(-2a,+∞)C.(-2a,5a]D.(-∞,5a]2、已知tanα,tanβ是方程x2+6x+7=0的根,那么tan(α-β)的值()A.2B.-2C.±2D.±3、某工廠生產(chǎn)的甲、乙、丙三種型號產(chǎn)品的數(shù)量之比為2:3:5,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為n的樣本,其中甲種產(chǎn)品有20件,則n=()A.50B.100C.150D.2004、設(shè)a=(3x2-2x)dx,則(ax2-)6的展開式中的第4項(xiàng)為()A.-1280x3B.-1280C.240D.-2405、如圖中的9個(gè)頂點(diǎn)中任取3個(gè)點(diǎn)作為一組,其中可構(gòu)成三角形的組數(shù)是()A.88B.84C.80D.766、若方程無實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是()A.(-∞,-1)B.[0,1)C.D.7、在中,內(nèi)角所對的邊分別為其中且面積為則A.B.C.D.8、【題文】[2013·山東濱州]若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P(m,n)落在直線x+y=4下方的概率為()A.B.C.D.9、如圖;正方體ABCD﹣A′B′C′D′中,M為BC邊的中點(diǎn),點(diǎn)P在底面A′B′C′D′和側(cè)面CDD′C′上運(yùn)動并且使∠MAC′=∠PAC′,那么點(diǎn)P的軌跡是()

A.兩段圓弧B.兩段橢圓弧C.兩段雙曲線弧D.兩段拋物線弧評卷人得分二、填空題(共6題,共12分)10、P(1,1)到圓(x-4)2+(y-5)2=1上的任意點(diǎn)的最大距離是____.11、函數(shù)y=sin(x+)的對稱軸方程是____.12、設(shè)M={1,2},N={a,b},a,b∈R,若M=N,則2a+b=____.13、函數(shù)y=-sinx+1的值域是____.14、已知命題p:A={x||x-a|<4},命題q:B={x|(x-2)(3-x)>0},若p是q的必要條件,則實(shí)數(shù)a的取值范圍是____.15、下述程序的表達(dá)式為____.

S=0

Fori=2To10

p=2i-1

S=S+

Next

輸出S.評卷人得分三、判斷題(共9題,共18分)16、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對錯(cuò))17、已知函數(shù)f(x)=4+ax-1的圖象恒過定點(diǎn)p,則點(diǎn)p的坐標(biāo)是(1,5)____.(判斷對錯(cuò))18、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.

(1)A={1,3,5},B={1,2,3,4,5,6}.____;

(2)A={1,3,5},B={1,3,6,9}.____;

(3)A={0},B={x|x2+1=0}.____;

(4)A={a,b,c,d},B={d,b,c,a}.____.19、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對錯(cuò))20、已知函數(shù)f(x)=4+ax-1的圖象恒過定點(diǎn)p,則點(diǎn)p的坐標(biāo)是(1,5)____.(判斷對錯(cuò))21、已知A={x|x=3k-2,k∈Z},則5∈A.____.22、空集沒有子集.____.23、任一集合必有兩個(gè)或兩個(gè)以上子集.____.24、若b=0,則函數(shù)f(x)=(2k+1)x+b在R上必為奇函數(shù)____.評卷人得分四、計(jì)算題(共1題,共9分)25、若△ABC的內(nèi)角滿足sinA+cosA>0,tanA-sinA<0,則角A的取值范圍是____.評卷人得分五、作圖題(共1題,共4分)26、已知函數(shù)f(x)=()x+a的圖象經(jīng)過第二;三、四象限.

(1)求實(shí)數(shù)a的取值范圍;

(2)設(shè)g(a)=f(a)-f(a+1),求g(a)的取值范圍.評卷人得分六、綜合題(共4題,共32分)27、設(shè)全集U={x|x>0};A={x|2≤x<4},B={x|3x-7≥8-2x},求:

(1)A∩B,A∪B,?U(A∪B),(?UA)∩B;

(2)若集合C={x|2x+a>0},滿足B∪C=C,求實(shí)數(shù)a的取值范圍.28、已知各項(xiàng)均為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為2,且2,an,Sn成等差數(shù)列.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.29、設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Sn是和an的等差中項(xiàng).

(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)證明.30、已知數(shù)列{an},{bn}滿足bn=an+1-an;其中n=1,2,3,

(1)若a1=1,bn=n,求數(shù)列{an}的通項(xiàng)公式;

(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.記cn=a6n-1(n≥1),求證:數(shù)列{cn}為等差數(shù)列.參考答案一、選擇題(共9題,共18分)1、A【分析】【分析】移項(xiàng)通分可化原不等式為,解不等式組可得.【解析】【解答】解:原不等式可化為-1≤0;

通分可得≤0;

整理可得≤0,等價(jià)于;

解不等式組可得5a≤x<-2a;(a<0)

故選:A2、D【分析】【分析】解一元二次方程求得tanα和tanβ的值,再利用兩角差的正切公式求得tan(α-β)的值.【解析】【解答】解:由tanα,tanβ是方程x2+6x+7=0的根;可得tanα+tanβ=-6,tanαtanβ=7;

求得tanα=-3+、tanβ=-3-,或tanα=-3-、tanβ=-3+.

當(dāng)tanα=-3+、tanβ=-3-時(shí),tan(α-β)==;

當(dāng)tanα=-3-、tanβ=-3+時(shí),tan(α-β)==-.

故選:D.3、B【分析】【分析】求出抽樣比,然后求解n的值即可.【解析】【解答】解:某工廠生產(chǎn)的甲;乙、丙三種型號產(chǎn)品的數(shù)量之比為2:3:5;

分層抽樣的方法抽取一個(gè)容量為n的樣本;

則甲被抽的抽樣比為:=;

甲種產(chǎn)品有20件,所以n==100;

故選:B.4、A【分析】【分析】先計(jì)算定積分,再寫出二項(xiàng)式的通項(xiàng),即可求得展開式中的第4項(xiàng).【解析】【解答】解:由于a=(3x2-2x)dx=(x3-x2)=4;

則(ax2-)6的通項(xiàng)為=(-1)r?;

故(ax2-)6的展開式中的第4項(xiàng)為T3+1=;

故選:A.5、D【分析】【分析】在所有的取法中,去掉三點(diǎn)共線的取法,即為可構(gòu)成三角形的取法.【解析】【解答】解:從9個(gè)點(diǎn)中任意取出3個(gè)點(diǎn),方法共有=84種;其中三點(diǎn)共線的有3+3+2=8種;

故其中可構(gòu)成三角形的組數(shù)是84-8=76;

故選D.6、C【分析】【分析】由根據(jù)方程的根與對應(yīng)函數(shù)零點(diǎn)之間的關(guān)系,我們可將方程無實(shí)數(shù)解,轉(zhuǎn)化為對應(yīng)函數(shù)無零點(diǎn),即函數(shù)y=與函數(shù)y=x+m的圖象無交點(diǎn),利用圖象法,我們易求出實(shí)數(shù)m的取值范圍.【解析】【解答】解:若方程無實(shí)數(shù)解

則函數(shù)y=與函數(shù)y=x+m的圖象無交點(diǎn)

在同一坐標(biāo)系中分別畫出函數(shù)y=與函數(shù)y=x+m的圖象如下圖所示:

∵函數(shù)y=的導(dǎo)函數(shù)y'=

令y'=1,則x=-

此時(shí),m=

結(jié)合上圖,我們易得滿足條件的實(shí)數(shù)m的取值范圍是(-∞,-1)∪(;+∞)

故選C7、D【分析】試題分析:利用三角形的面積公式表示出三角形ABC的面積,將sinA與b的值,以及已知面積代入求出c=4,再由b,c及cosA的值,利用余弦定理求出a的長,由a=與sinA的值,利用正弦定理求出三角形外接圓的半徑R,利用正弦定理及比例的性質(zhì)即可求出所求式子的值.考點(diǎn):正弦定理.【解析】【答案】D8、C【分析】【解析】試驗(yàn)是連續(xù)擲兩次骰子.故共包含6×6=36個(gè)基本事件.事件“點(diǎn)P(m,n)落在x+y=4下方”,包含(1,1),(1,2),(2,1)共3個(gè)基本事件,故P==【解析】【答案】C9、C【分析】【解答】P點(diǎn)的軌跡實(shí)際是一個(gè)正圓錐面和兩個(gè)平面的交線;這個(gè)正圓錐面的中心軸即為AC′;頂點(diǎn)為A,頂角的一半即為∠MAC′;

以A點(diǎn)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則A(0,0,1),C′(1,1,0),M(1,1);

∴=(1,1,﹣1),=(1,0);

∵cos∠MAC′=

設(shè)AC′與底面A′B′C′D′所成的角為θ,則cosθ=

∴θ<∠MAC′;

∴該正圓錐面和底面A′B′C′D′的交線是雙曲線??;

同理可知;P點(diǎn)在平面CDD′C′的交線是雙曲線??;

故選C.

【分析】以A點(diǎn)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,可求得A,C′,M等點(diǎn)的坐標(biāo),從而可求得cos∠MAC′,設(shè)設(shè)AC′與底面A′B′C′D′所成的角為θ,繼而可求得cosθ,比較θ與∠MAC′的大小,利用正圓錐曲線被與中心軸成θ的平面所截曲線,即可得到答案。二、填空題(共6題,共12分)10、略

【分析】【分析】求出點(diǎn)P(1,1)與圓心的距離為d,再把d加上半徑,即為所求.【解析】【解答】解:∵點(diǎn)P(1,1)與圓心的距離為d=

故點(diǎn)P(1,1)與圓(x-4)2+(y-5)2=1上的點(diǎn)的距離最大值是d+r=5+1=6

故答案為:611、略

【分析】【分析】根據(jù)正弦函數(shù)的對稱性即可得到結(jié)論.【解析】【解答】解:由x+=;

解得x=2kπ+;k∈Z;

故函數(shù)y=sin(x+)的對稱軸方程是x=2kπ+;k∈Z;

故答案為:x=2kπ+,k∈Z,12、略

【分析】【分析】根據(jù)相等集合的定義求出a,b的值,從而求出2a+b的值即可.【解析】【解答】解:設(shè)M={1,2},N={a,b},a,b∈R;

若M=N,則a=1,b=2或a=2,b=1;

∴2a+b=4或2b=5;

故答案為:4或5.13、略

【分析】【分析】由條件利用正弦函數(shù)的值域,不等式的基本性質(zhì),求得函數(shù)y=-sinx+1的值域.【解析】【解答】解:由sinx∈[-1,1],可得-sinx∈[-,],∴y=-sinx+1∈[,];

故答案為:[,].14、略

【分析】【分析】先化簡集合A,B,利用p是q的必要條件,確定不等條件,然后求解即可.【解析】【解答】解:B={x|(x-2)(3-x)>0}={x|(x-2)(x-3)<0}={x|2<x<3};

A={x||x-a|<4}={x|-4<x-a<4}=A={x|a-4<x<a+4};

∵p是q的必要條件;∴q?p,即B?A;

即,∴;即-1≤a≤6.

即實(shí)數(shù)a的取值范圍是[-1;6].

故答案為:[-1,6].15、S=++++【分析】【分析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出滿足條件時(shí)S=++++的值.【解析】【解答】解:程序中體現(xiàn)的循環(huán)語句的應(yīng)用.

S=++++.

故答案為:S=++++.三、判斷題(共9題,共18分)16、×【分析】【分析】根據(jù)奇函數(shù)的定義進(jìn)行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點(diǎn)對稱;

故函數(shù)y=sinx不是奇函數(shù);

故答案為:×17、√【分析】【分析】已知函數(shù)f(x)=ax-1+4,根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過的定點(diǎn).【解析】【解答】解:∵函數(shù)f(x)=ax-1+4;其中a>0,a≠1;

令x-1=0,可得x=1,ax-1=1;

∴f(x)=1+4=5;

∴點(diǎn)P的坐標(biāo)為(1;5);

故答案為:√18、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;

(2)5∈A;而5?B,∴A不是B的子集;

(3)B=?;∴A不是B的子集;

(4)A;B兩集合的元素相同,A=B,∴A是B的子集.

故答案為:√,×,×,√.19、×【分析】【分析】根據(jù)奇函數(shù)的定義進(jìn)行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點(diǎn)對稱;

故函數(shù)y=sinx不是奇函數(shù);

故答案為:×20、√【分析】【分析】已知函數(shù)f(x)=ax-1+4,根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過的定點(diǎn).【解析】【解答】解:∵函數(shù)f(x)=ax-1+4;其中a>0,a≠1;

令x-1=0,可得x=1,ax-1=1;

∴f(x)=1+4=5;

∴點(diǎn)P的坐標(biāo)為(1;5);

故答案為:√21、×【分析】【分析】判斷5與集合A的關(guān)系即可.【解析】【解答】解:由3k-2=5得,3k=7,解得k=;

所以5?Z;所以5∈A錯(cuò)誤.

故答案為:×22、×【分析】【分析】根據(jù)空集的性質(zhì),分析可得空集是其本身的子集,即可得答案.【解析】【解答】解:根據(jù)題意;空集是任何集合的子集,是任何非空集合的真子集;

即空集是其本身的子集;則原命題錯(cuò)誤;

故答案為:×.23、×【分析】【分析】特殊集合?只有一個(gè)子集,故任一集合必有兩個(gè)或兩個(gè)以上子集錯(cuò)誤.【解析】【解答】解:?表示不含任何元素;?只有本身一個(gè)子集,故錯(cuò)誤.

故答案為:×.24、√【分析】【分析】根據(jù)奇函數(shù)的定義即可作出判斷.【解析】【解答】解:當(dāng)b=0時(shí);f(x)=(2k+1)x;

定義域?yàn)镽關(guān)于原點(diǎn)對稱;

且f(-x)=-(2k+1)x=-f(x);

所以函數(shù)f(x)為R上的奇函數(shù).

故答案為:√.四、計(jì)算題(共1題,共9分)25、【分析】【分析】在三角形中,分別解兩個(gè)不等式,再求它們的交集即可.【解析】【解答】解:sinA+cosA=sin(A+)>0,又0<A<π,故0<A<π;

tanA-sinA<0,即-sinA<0,又sinA>0,cosA<1,故cosA<0,即<A<π,綜上,A∈;

故答案為:.五、作圖題(共1題,共4分)26、略

【分析】【分析】(1)直接由函數(shù)的圖象平移結(jié)合圖象求得a的取值范圍;

(2)求出g(a),再由(1)中求得的a的范圍得到g(a)的取值范圍.【解析】【解答】解:(1)如圖,

∵函數(shù)f(x)=()x+a的圖象經(jīng)過第二;三、四象限;

∴a<-1;

(2)g(a)=f(a)-f(a+1)

==.

∵a<-1;

∴;

則.

故g(a)的取值范圍是(2,+∞).六、綜合題(共4題,共32分)27、略

【分析】【分析】(1)求出B中不等式的解集確定出B;找出A與B的交集即可;找出A與B的并集,確定出并集的補(bǔ)集即可;根據(jù)全集U及A求出A的補(bǔ)集,找出A補(bǔ)集與B的交集即可;

(2)B∪C=C,B?C,利用子集關(guān)系,即可求實(shí)數(shù)a的取值范圍.【解析】【解答】解:(1)由B中的不等式解得:5x≥15;即x≥3;

∴B=[3;+∞);

∵A={x|2≤x<4}=[2;4);

∴A∩B=[3;4),A∪B=[2,+∞);

∴?U(A∪B)=(-∞;2).

∵全集U=R;A=[2,4);

∴?UA=(-∞;2)∪[4,+∞);

則(?UA)∩B=[3;+∞);

(2)集合C={x|2x+a>0}=(-;+∞);

∵B∪C=C;∴B?C;

∴->3,∴a<-6.28、略

【分析】【分析】(Ⅰ)由題意可得,2an=2+Sn,結(jié)合2an-1=2+Sn-1(n≥2)可得數(shù)列an與an-1的關(guān)系;結(jié)合特殊數(shù)列的通項(xiàng)公式可求;

(Ⅱ)由(Ⅰ)可求得bn,利用錯(cuò)位相減法可求得Tn.【解析】【解答】解:(Ⅰ)由題意知2an=sn+2,且an>0,a1=2;

當(dāng)n≥2時(shí),sn=2an-2,sn-1=2an-1-2;

兩式相減得,an=2an-2an-1,整理得:;

∴數(shù)列{an}是以2為首項(xiàng);2為公比的等比數(shù)列.

∴;

(Ⅱ)由(Ⅰ)知,∴bn=n2n;

;①

2Tn=22+2?23+3?24++n?2n+1;②

①-②得,;

∴;

∴.29、略

【分析】【分析】(Ⅰ)由Sn是和an的等差中項(xiàng),知2Sn=,且an>0,由此能夠證明數(shù)列{an}為等差數(shù)列,并能求出數(shù)列{an}的通項(xiàng)公式.

(Ⅱ)由an=n,則,故=2(),由此能夠證明.【解析】【解答】解:(Ⅰ)∵Sn是和an的等差中項(xiàng);

∴2Sn=,且an>0;

當(dāng)n=1時(shí),2a1=+a1,解得a1=1;

當(dāng)n≥2時(shí),有2Sn-1=+a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論