版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年華東師大版高一數(shù)學上冊階段測試試卷742考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、設c=20.3,則a、b;c的大小順序為()
A.a<b<c
B.a<c<b
C.c<a<b
D.b<a<c
2、【題文】
.已知均為大于0的實數(shù),設命題P:以為長度的線段可以構(gòu)成三角形的三邊;
命題Q:則P是Q的()A.充分但不必要條件B.必要但不充分條件C.充要條件D.既不充分也不必要條件3、【題文】若函數(shù)滿足:“對于區(qū)間(1,2)上的任意實數(shù)恒成立”,則稱為完美函數(shù).在下列四個函數(shù)中,完美函數(shù)是A.B.C.D.4、在平面直角坐標系xOy中,點A(5,0),對于某個正實數(shù)k,存在函數(shù)f(x)=a(a>0).使得=λ·(+)(λ為常數(shù)),這里點P、Q的坐標分別為P(1,f(1)),Q(k,f(k)),則k的取值范圍為()A.(2,+∞)B.(3,+∞)C.[4,+∞)D.[8,+∞)5、已知a=log20.3,b=20.3,c=0.30.2,則a,b,c三者的大小關系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a評卷人得分二、填空題(共5題,共10分)6、計算:=____.7、用符號“”表示不超過x的最大整數(shù),如設集合則____.8、【題文】把函數(shù)的圖象向右平移2個單位后,得到函數(shù)的圖像,則____。9、【題文】一個四邊形的斜二測直觀圖是一個底角為45°,腰和上底的長均為1的等腰梯形,那么原四邊形的面積是____.10、用M[A]表示非空集合A中的元素個數(shù),記|A-B|=若A={1,2,3},B={x||x2-2x-3|=a},且|A-B|=1,則實數(shù)a的取值范圍為______.評卷人得分三、證明題(共7題,共14分)11、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.12、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.13、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.14、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.15、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.16、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.17、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.評卷人得分四、作圖題(共4題,共36分)18、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設管道的費用最省,并求出其費用.19、以下是一個用基本算法語句編寫的程序;根據(jù)程序畫出其相應的程序框圖.
20、請畫出如圖幾何體的三視圖.
21、某潛艇為躲避反潛飛機的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機的偵查.試畫出潛艇整個過程的位移示意圖.評卷人得分五、計算題(共2題,共20分)22、有一組數(shù)據(jù):x1,x2,x3,,xn(x1≤x2≤x3≤≤xn),它們的算術(shù)平均值為10,若去掉其中最大的xn,余下數(shù)據(jù)的算術(shù)平均值為9;若去掉其中最小的x1,余下數(shù)據(jù)的算術(shù)平均值為11.則x1關于n的表達式為x1=____;xn關于n的表達式為xn=____.23、已知定義在[﹣3;3]上的函數(shù)y=f(x)是增函數(shù).
(1)若f(m+1)>f(2m﹣1);求m的取值范圍;
(2)若函數(shù)f(x)是奇函數(shù),且f(2)=1,解不等式f(x+1)+1>0.評卷人得分六、解答題(共2題,共16分)24、已知角α的終邊在函數(shù)y=-x的圖象上,求sinα和cosα的值.25、如表給出一個“三角形數(shù)陣”:已知每一列的數(shù)成等差數(shù)列,從第三行起,每一行的數(shù)成等比數(shù)列,每一行的公比都相等,記第i行第j列的數(shù)為aij(i≥j,i,j∈N*);
(1)求a83;
(2)試寫出aij關于i;j的表達式;
(3)記第n行的和為An,求數(shù)列{An}的前m項和Bm的表達式.參考答案一、選擇題(共5題,共10分)1、A【分析】
∵20.3>2=1;
∴a<b<c.
故選A.
【解析】【答案】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性即可比較出其大?。?/p>
2、A【分析】【解析】略【解析】【答案】A3、A【分析】【解析】略【解析】【答案】A4、A【分析】【解答】由題設知,點所以向量所以因為=λ·(+)(λ為常數(shù)),所以兩式相除得,所以且且
故選A.5、C【分析】【解答】解:∵a=log20.3<log21=0,b=20.3>20=1;
0<c=0.30.2<0.30=1;
∴b>c>a.
故選C.
【分析】由a=log20.3<log21=0,b=20.3>20=1,0<c=0.30.2<0.30=1,知b>c>a.二、填空題(共5題,共10分)6、略
【分析】【解析】試題分析:考點:對數(shù)的運算;指數(shù)冪的運算?!窘馕觥俊敬鸢浮?、略
【分析】【解析】試題分析:因為當x>0時,所以所以此時x=2,若所以此時x=-1,所以因為B=(-2,2),所以考點:一元二次不等式,絕對值不等式的解法,以及集合的運算?!窘馕觥俊敬鸢浮?、略
【分析】【解析】
試題分析:把函數(shù)的圖象向右平移2個單位后,得到函數(shù)
考點:本題考查了函數(shù)圖象的變換。
點評:要作函數(shù)y=f(x+a)的圖象,只需將函數(shù)y=f(x)的圖象向左(a>0)或向右(a<0=平移個單位即可.稱之為函數(shù)圖象的左、右平移變換.【解析】【答案】9、略
【分析】【解析】略【解析】【答案】2+10、略
【分析】解:(1)若a=0,得到x2-2x-3=0;∴集合B有2個元素,則|A-B|=1,符合條件|A-B|=1;
(2)a>0時,得到x2-2x-3=±a,即x2-2x-3-a=0或x2-2x-3+a=0;
對于方程x2-2x-3-a=0;△=4+4(3+a)>0,即該方程有兩個不同實數(shù)根;
又|A-B|=1;B有2個或4個元素;
∴△=4-4(a-3)<0或△=4-4(a-3)>0;
∴a<4或a>4.
綜上所述0≤a<4或a>4.
故答案為:0≤a<4或a>4.
根據(jù)已知條件容易判斷出a=0符合,a>0時,由集合B得到兩個方程,x2-2x-3-a=0或x2-2x-3+a=0.容易判斷出B有2個或4個元素;所以判別式△=4-4(a-3)<0或△=4-4(a-3)>0,這樣即可求出a的范圍.
考查對新定義|A-B|的理解及運用情況,以及描述法表示集合,一元二次方程解的情況和判別式△的關系.【解析】0≤a<4或a>4三、證明題(共7題,共14分)11、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.12、略
【分析】【分析】(1)關鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.13、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點;
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.14、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.15、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.16、略
【分析】【分析】首先作CD關于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關于AB的對稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.17、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點;
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.四、作圖題(共4題,共36分)18、略
【分析】【分析】作點A關于河CD的對稱點A′,當水廠位置O在線段AA′上時,鋪設管道的費用最?。窘馕觥俊窘獯稹拷猓鹤鼽cA關于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設的管道長度為OA+OB.
∵點A與點A′關于CD對稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設管道的最省費用為10000元.19、解:程序框圖如下:
【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號及其作用,即可畫出流程圖.20、解:如圖所示:
【分析】【分析】由幾何體是圓柱上面放一個圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長方形上邊加一個三角形,長方形上邊加一個三角形,圓加一點.21、解:由題意作示意圖如下;
【分析】【分析】由題意作示意圖。五、計算題(共2題,共20分)22、略
【分析】【分析】先表示n個數(shù)的和,在分別表示去掉最大或最小數(shù)后的數(shù)據(jù)的和,經(jīng)過代數(shù)式變形可得到答案.【解析】【解答】解:由題意知,有:(x2+x3++xn)÷(n-1)=11;
∴(x2+x3++xn)=11(n-1);
∵(x1+x2+x3++xn)÷n=10;
∴[x1+11(n-1)]÷n=10,∴x1=11-n;
又∵(x1+x2+x3++xn-1)÷(n-1)=9;
∴(x1+x2+x3++xn-1)=9(n-1)
∴[(x1+x2+x3++xn-1)+xn]÷n=10;
∴[9(n-1)+xn]÷n=10,∴xn=n+9.
故答案為:11-n;n+9.23、解:由題意可得,{#mathml#}-3≤m+1≤3-3≤2m-1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:兼容視聽障礙的VR博物館時空導覽與審美補償研究
- 基于區(qū)塊鏈技術(shù)的2025年物流追蹤系統(tǒng)開發(fā)合同3篇
- 2025年度漁船買賣合同(含漁民福利保障)4篇
- 2025年度個人與金融機構(gòu)客戶信息保密及合規(guī)管理協(xié)議4篇
- 二零二五版林業(yè)資源保護與木材采購合作協(xié)議4篇
- 二零二五年度出差人員差旅費用結(jié)算與報銷合同4篇
- WPS格式2024年度建筑工程施工合作合同一
- 退房時2025年度物業(yè)管理費結(jié)算協(xié)議3篇
- 二零二五年度充電樁充電接口標準制定合同3篇
- 2025年度無人機配送司機合作協(xié)議范本
- 2025-2030年中國草莓市場競爭格局及發(fā)展趨勢分析報告
- 華為智慧園區(qū)解決方案介紹
- 奕成玻璃基板先進封裝中試線項目環(huán)評報告表
- 廣西壯族自治區(qū)房屋建筑和市政基礎設施全過程工程咨詢服務招標文件范本(2020年版)修訂版
- 人教版八年級英語上冊期末專項復習-完形填空和閱讀理解(含答案)
- 2024新版有限空間作業(yè)安全大培訓
- GB/T 44304-2024精細陶瓷室溫斷裂阻力試驗方法壓痕(IF)法
- 年度董事會工作計劃
- 《退休不褪色余熱亦生輝》學校退休教師歡送會
- 02R112拱頂油罐圖集
- 2021年新教材重慶生物高考真題(含答案解析)
評論
0/150
提交評論