烏蘭察布醫(yī)學(xué)高等??茖W(xué)?!镀放普w形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
烏蘭察布醫(yī)學(xué)高等??茖W(xué)?!镀放普w形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
烏蘭察布醫(yī)學(xué)高等專科學(xué)?!镀放普w形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
烏蘭察布醫(yī)學(xué)高等??茖W(xué)校《品牌整體形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
烏蘭察布醫(yī)學(xué)高等??茖W(xué)校《品牌整體形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁烏蘭察布醫(yī)學(xué)高等??茖W(xué)?!镀放普w形象設(shè)計(jì)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的圖像質(zhì)量評(píng)估任務(wù)中,假設(shè)要評(píng)估一張經(jīng)過處理后的圖像的質(zhì)量。以下關(guān)于圖像質(zhì)量評(píng)估方法的描述,正確的是:()A.主觀評(píng)估方法通過人的觀察和判斷來評(píng)價(jià)圖像質(zhì)量,結(jié)果準(zhǔn)確可靠B.客觀評(píng)估方法中的全參考方法需要原始未失真圖像作為參考,計(jì)算復(fù)雜度低C.無參考圖像質(zhì)量評(píng)估方法能夠在沒有原始圖像的情況下準(zhǔn)確評(píng)估圖像質(zhì)量D.所有的圖像質(zhì)量評(píng)估方法都能夠完全反映人對(duì)圖像質(zhì)量的主觀感受2、在計(jì)算機(jī)視覺中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測(cè)出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車輛檢測(cè),以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測(cè)和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進(jìn)行匹配D.對(duì)圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類3、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像超分辨率重建任務(wù),將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種深度學(xué)習(xí)模型可能在重建效果上表現(xiàn)出色?()A.SRCNNB.ESPCNC.DRCND.以上都是4、在計(jì)算機(jī)視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲(chǔ)等方面具有實(shí)用價(jià)值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失5、計(jì)算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設(shè)要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關(guān)于模型訓(xùn)練的挑戰(zhàn),哪一項(xiàng)是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數(shù)據(jù)用于訓(xùn)練B.模型的訓(xùn)練時(shí)間過長,難以在短時(shí)間內(nèi)得到結(jié)果C.難以評(píng)估重建后的圖像質(zhì)量,沒有明確的標(biāo)準(zhǔn)D.計(jì)算資源需求過大,普通計(jì)算機(jī)難以承受6、在一個(gè)基于計(jì)算機(jī)視覺的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機(jī)器人的路徑。以下哪種視覺導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是7、假設(shè)要構(gòu)建一個(gè)能夠識(shí)別人臉表情的計(jì)算機(jī)視覺系統(tǒng),用于情感分析和人機(jī)交互??紤]到表情的細(xì)微變化和個(gè)體差異,以下哪種模型架構(gòu)可能更適合處理這種復(fù)雜的任務(wù)?()A.多層感知機(jī)B.卷積神經(jīng)網(wǎng)絡(luò)C.循環(huán)神經(jīng)網(wǎng)絡(luò)D.生成對(duì)抗網(wǎng)絡(luò)8、在計(jì)算機(jī)視覺的遙感圖像分析中,假設(shè)要從衛(wèi)星遙感圖像中提取土地利用信息,以下哪種技術(shù)可能對(duì)區(qū)分不同類型的土地覆蓋有幫助?()A.高光譜分析B.紋理分析C.形狀分析D.以上都有可能9、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)一個(gè)工廠需要檢測(cè)生產(chǎn)線上的零件是否存在缺陷。以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.能夠快速準(zhǔn)確地檢測(cè)出零件的表面缺陷、尺寸偏差等問題B.可以通過機(jī)器視覺系統(tǒng)對(duì)零件進(jìn)行自動(dòng)分類和篩選C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺系統(tǒng)需要高度的穩(wěn)定性和可靠性,對(duì)環(huán)境變化不敏感D.計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用已經(jīng)非常成熟,不需要人工干預(yù)和校驗(yàn)10、在計(jì)算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復(fù)出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對(duì)相機(jī)的標(biāo)定精度要求不高B.結(jié)構(gòu)光方法能夠快速準(zhǔn)確地獲取物體表面的三維信息,但對(duì)環(huán)境光敏感C.從運(yùn)動(dòng)中恢復(fù)結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場(chǎng)景,無法處理動(dòng)態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型11、在計(jì)算機(jī)視覺的姿態(tài)估計(jì)任務(wù)中,假設(shè)要估計(jì)一個(gè)物體在三維空間中的姿態(tài),例如估計(jì)一個(gè)機(jī)器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實(shí)現(xiàn)這一目標(biāo)?()A.基于立體視覺的方法,通過多個(gè)相機(jī)的觀測(cè)B.利用深度學(xué)習(xí)模型直接預(yù)測(cè)姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進(jìn)行估計(jì)D.隨機(jī)猜測(cè)物體的姿態(tài)12、在計(jì)算機(jī)視覺的目標(biāo)檢測(cè)中,對(duì)于小目標(biāo)的檢測(cè)往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測(cè)的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是13、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,同時(shí)保留圖像的細(xì)節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴(yán)重噪聲污染的醫(yī)學(xué)圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時(shí),最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法14、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)??()A.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型15、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個(gè)在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項(xiàng)是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測(cè)目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會(huì)對(duì)跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢(shì),提高跟蹤性能16、計(jì)算機(jī)視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力17、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,需要從車輛圖像中準(zhǔn)確提取車牌號(hào)碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識(shí)別方法在應(yīng)對(duì)這些挑戰(zhàn)時(shí)表現(xiàn)更為出色?()A.基于字符分割的車牌識(shí)別B.基于模板匹配的車牌識(shí)別C.基于深度學(xué)習(xí)的車牌識(shí)別D.基于特征提取的車牌識(shí)別18、計(jì)算機(jī)視覺中的表情識(shí)別旨在判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情特征的提取,哪一項(xiàng)是需要重點(diǎn)關(guān)注的?()A.提取面部肌肉的細(xì)微運(yùn)動(dòng)作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關(guān)注局部特征D.不進(jìn)行任何特征提取,直接使用原始圖像進(jìn)行分類19、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個(gè)移動(dòng)的物體,例如跟蹤一只飛行的鳥。物體可能會(huì)被其他物體遮擋,并且外觀可能會(huì)發(fā)生變化。以下哪種目標(biāo)跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測(cè)物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標(biāo)位置,后續(xù)幀不再跟蹤D.隨機(jī)選擇視頻中的區(qū)域作為跟蹤目標(biāo)20、在計(jì)算機(jī)視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會(huì)對(duì)結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會(huì)丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進(jìn)分類算法來應(yīng)對(duì)21、計(jì)算機(jī)視覺中的場(chǎng)景理解是對(duì)整個(gè)圖像場(chǎng)景的語義和結(jié)構(gòu)進(jìn)行分析和理解。以下關(guān)于場(chǎng)景理解的描述,不準(zhǔn)確的是()A.場(chǎng)景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個(gè)方面B.可以通過構(gòu)建場(chǎng)景圖來表示場(chǎng)景中的實(shí)體和關(guān)系,輔助場(chǎng)景理解C.場(chǎng)景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價(jià)值D.場(chǎng)景理解是一個(gè)已經(jīng)完全解決的問題,不存在任何技術(shù)難題22、計(jì)算機(jī)視覺中的手勢(shì)識(shí)別用于理解人的手勢(shì)動(dòng)作。假設(shè)要在一個(gè)智能交互系統(tǒng)中實(shí)現(xiàn)實(shí)時(shí)準(zhǔn)確的手勢(shì)識(shí)別,以下關(guān)于手勢(shì)識(shí)別方法的描述,正確的是:()A.基于傳感器的手勢(shì)識(shí)別方法能夠精確獲取手勢(shì)的運(yùn)動(dòng)信息,但佩戴傳感器不方便B.基于視覺的手勢(shì)識(shí)別方法不受環(huán)境光照和背景的影響,識(shí)別穩(wěn)定性高C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在手勢(shì)識(shí)別中無法處理復(fù)雜的手勢(shì)變化和遮擋D.手勢(shì)識(shí)別系統(tǒng)只要能夠識(shí)別常見的幾種手勢(shì),就能夠滿足大多數(shù)應(yīng)用需求23、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個(gè)或多個(gè)運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一個(gè)在操場(chǎng)上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實(shí)現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運(yùn)動(dòng)速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤24、在計(jì)算機(jī)視覺的動(dòng)作識(shí)別任務(wù)中,區(qū)分不同的人體動(dòng)作。假設(shè)要從一段視頻中識(shí)別出一個(gè)人是在跑步還是走路,以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于骨架信息的動(dòng)作識(shí)別方法對(duì)人體姿態(tài)的微小變化不敏感B.只考慮動(dòng)作的空間特征就能準(zhǔn)確識(shí)別不同的動(dòng)作C.融合時(shí)空特征和深度學(xué)習(xí)模型能夠提升動(dòng)作識(shí)別的準(zhǔn)確率D.動(dòng)作識(shí)別的結(jié)果不受視頻拍攝角度和背景干擾的影響25、在計(jì)算機(jī)視覺的三維重建任務(wù)中,例如從多視角圖像恢復(fù)物體的三維形狀,需要解決相機(jī)位姿估計(jì)、特征匹配等問題。以下哪種方法在相機(jī)位姿估計(jì)方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點(diǎn)的方法D.基于深度學(xué)習(xí)的方法26、在計(jì)算機(jī)視覺的姿態(tài)估計(jì)任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)我們要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下哪種技術(shù)通常被用于獲取準(zhǔn)確的姿態(tài)信息?()A.基于視覺標(biāo)記的姿態(tài)估計(jì)B.基于深度學(xué)習(xí)的姿態(tài)估計(jì)C.基于幾何約束的姿態(tài)估計(jì)D.基于慣性測(cè)量單元(IMU)的姿態(tài)估計(jì)27、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像語義分割任務(wù),例如將圖像中的不同物體分割出來,以下哪種深度學(xué)習(xí)架構(gòu)可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是28、計(jì)算機(jī)視覺中的表情識(shí)別旨在識(shí)別圖像或視頻中人物的表情。假設(shè)要在一個(gè)情感分析系統(tǒng)中準(zhǔn)確識(shí)別表情,以下關(guān)于表情識(shí)別方法的描述,正確的是:()A.基于幾何特征的表情識(shí)別方法對(duì)表情的細(xì)微變化不敏感,識(shí)別準(zhǔn)確率低B.基于紋理特征的表情識(shí)別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在表情識(shí)別中能夠?qū)W習(xí)到全局和局部的特征,但對(duì)大規(guī)模數(shù)據(jù)集依賴嚴(yán)重D.表情識(shí)別系統(tǒng)只適用于正面清晰的人臉表情,對(duì)于側(cè)臉和遮擋的表情無法識(shí)別29、對(duì)于圖像的邊緣檢測(cè)任務(wù),假設(shè)要準(zhǔn)確檢測(cè)出圖像中物體的邊緣,同時(shí)抑制噪聲的影響。以下哪種邊緣檢測(cè)算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機(jī)生成邊緣檢測(cè)結(jié)果30、對(duì)于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場(chǎng)景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測(cè)圖像的語義二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)開發(fā)一個(gè)能夠識(shí)別不同種類鳥類的計(jì)算機(jī)視覺應(yīng)用。2、(本題5分)利用圖像識(shí)別技術(shù),對(duì)不同品牌的電腦顯示器圖像進(jìn)行識(shí)別和分類。3、(本題5分)設(shè)計(jì)一個(gè)系統(tǒng),利用計(jì)算機(jī)視覺檢測(cè)工廠生產(chǎn)線上的產(chǎn)品缺陷。4、(本題5分)運(yùn)用圖像分類技術(shù),對(duì)不同種類的折扇進(jìn)行分類。5、(本題5分)開發(fā)一個(gè)可以識(shí)別不同種類真菌的計(jì)算機(jī)視覺應(yīng)用。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論