湖北醫(yī)藥學(xué)院藥護學(xué)院《跨媒體數(shù)據(jù)可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
湖北醫(yī)藥學(xué)院藥護學(xué)院《跨媒體數(shù)據(jù)可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
湖北醫(yī)藥學(xué)院藥護學(xué)院《跨媒體數(shù)據(jù)可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
湖北醫(yī)藥學(xué)院藥護學(xué)院《跨媒體數(shù)據(jù)可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
湖北醫(yī)藥學(xué)院藥護學(xué)院《跨媒體數(shù)據(jù)可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁湖北醫(yī)藥學(xué)院藥護學(xué)院

《跨媒體數(shù)據(jù)可視化》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、對于一個分類問題,若訓(xùn)練集的準(zhǔn)確率很高,但測試集的準(zhǔn)確率很低,可能的原因是?()A.模型過擬合B.模型欠擬合C.數(shù)據(jù)有偏差D.特征選擇不當(dāng)2、數(shù)據(jù)挖掘在發(fā)現(xiàn)潛在模式和知識方面具有重要作用。假設(shè)要從電商網(wǎng)站的用戶購買記錄中挖掘用戶的購買行為模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,有助于推薦系統(tǒng)的構(gòu)建B.決策樹算法不適合處理這種大量且復(fù)雜的用戶購買數(shù)據(jù)C.聚類分析不能用于區(qū)分具有不同購買行為的用戶群體D.神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)挖掘中應(yīng)用有限,效果不如傳統(tǒng)方法3、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的選擇很重要。以下關(guān)于數(shù)據(jù)挖掘算法選擇的說法中,錯誤的是?()A.數(shù)據(jù)挖掘算法的選擇應(yīng)根據(jù)數(shù)據(jù)的特點、分析目的和計算資源等因素來確定B.不同的數(shù)據(jù)挖掘算法適用于不同類型的數(shù)據(jù)和問題,沒有一種算法是萬能的C.選擇數(shù)據(jù)挖掘算法時,可以參考其他類似項目的經(jīng)驗,但不能完全照搬D.數(shù)據(jù)挖掘算法的選擇只需要考慮算法的準(zhǔn)確性,其他因素如計算效率等可以忽略不計4、在數(shù)據(jù)分析中,對于一個包含大量金融交易數(shù)據(jù)的數(shù)據(jù)集,需要檢測是否存在異常交易行為,例如突然的大額交易、頻繁的小額交易等。以下哪種技術(shù)可能在異常檢測中發(fā)揮重要作用?()A.聚類分析B.決策樹C.孤立森林算法D.以上都不是5、對于一個包含多個變量的數(shù)據(jù)集,若要找出變量之間的潛在結(jié)構(gòu)關(guān)系,以下哪種方法較為有效?()A.主成分分析B.判別分析C.對應(yīng)分析D.典型相關(guān)分析6、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時保留數(shù)據(jù)的主要特征?()A.主成分分析B.因子分析C.線性判別分析D.以上都是7、數(shù)據(jù)分析中的隨機森林是一種集成學(xué)習(xí)算法。假設(shè)我們使用隨機森林進行分類任務(wù),以下哪個因素會影響隨機森林的性能?()A.決策樹的數(shù)量B.特征的隨機選擇C.樣本的隨機抽樣D.以上都是8、在進行數(shù)據(jù)分析以評估一個新的市場營銷活動的效果時,比如分析活動前后的客戶流量、購買轉(zhuǎn)化率和客戶滿意度等指標(biāo)的變化。由于活動期間可能受到其他外部因素的干擾,為了準(zhǔn)確評估活動的貢獻,以下哪種方法可能是合適的?()A.建立對照組進行對比B.只關(guān)注活動期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗主觀判斷9、數(shù)據(jù)分析中的假設(shè)檢驗用于判斷樣本數(shù)據(jù)是否支持某個假設(shè)。假設(shè)我們要檢驗一種新的營銷策略是否有效。以下關(guān)于假設(shè)檢驗的描述,哪一項是不正確的?()A.零假設(shè)通常表示沒有差異或沒有效果B.通過計算檢驗統(tǒng)計量和p值來決定是否拒絕零假設(shè)C.p值越小,說明拒絕零假設(shè)的證據(jù)越充分D.假設(shè)檢驗的結(jié)果一定能夠準(zhǔn)確地反映實際情況,不存在誤差10、在進行數(shù)據(jù)分析時,特征工程對于模型的性能有著重要影響。假設(shè)你正在處理一個預(yù)測房價的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項是最需要謹慎處理的?()A.對數(shù)值型特征進行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來不重要的特征,以簡化模型11、在處理大量數(shù)據(jù)時,為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊列12、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來自不同部門的銷售數(shù)據(jù)、庫存數(shù)據(jù)和客戶數(shù)據(jù),這些數(shù)據(jù)格式不一致且存在重復(fù)和沖突。以下哪種數(shù)據(jù)集成方法在處理這種復(fù)雜的數(shù)據(jù)整合問題時更能確保數(shù)據(jù)的一致性和準(zhǔn)確性?()A.基于ETL工具的集成B.手動編寫代碼進行集成C.直接合并數(shù)據(jù),忽略沖突D.隨機選擇部分數(shù)據(jù)進行集成13、在進行數(shù)據(jù)分析時,如果需要對多個變量進行主成分分析,以下哪個軟件或庫提供了較為方便的實現(xiàn)?()A.ExcelB.SPSSC.Python的sklearn庫D.以上都是14、在數(shù)據(jù)分析中,深度學(xué)習(xí)模型在處理復(fù)雜數(shù)據(jù)方面表現(xiàn)出色。假設(shè)我們要使用深度學(xué)習(xí)進行圖像識別。以下關(guān)于深度學(xué)習(xí)在數(shù)據(jù)分析中的描述,哪一項是錯誤的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)是常用于圖像識別的深度學(xué)習(xí)模型B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和計算資源C.深度學(xué)習(xí)模型的訓(xùn)練過程簡單,不需要進行調(diào)優(yōu)和優(yōu)化D.深度學(xué)習(xí)可以與傳統(tǒng)的數(shù)據(jù)分析方法結(jié)合,提高分析效果15、假設(shè)我們有一組關(guān)于學(xué)生成績的數(shù)據(jù),包括語文、數(shù)學(xué)、英語等科目成績,要分析這些科目成績之間的相關(guān)性,以下哪種可視化方法較為直觀?()A.熱力圖B.雷達圖C.散點圖矩陣D.以上都不是二、簡答題(本大題共3個小題,共15分)1、(本題5分)闡述數(shù)據(jù)分析師如何在項目中進行風(fēng)險評估和應(yīng)對,包括識別風(fēng)險、評估風(fēng)險影響和制定應(yīng)對策略,并舉例說明。2、(本題5分)在進行回歸分析時,如何判斷模型的擬合優(yōu)度?解釋常用的評估指標(biāo)如R平方值的含義和作用,并說明如何改進擬合不好的模型。3、(本題5分)簡述數(shù)據(jù)挖掘中的Web挖掘,包括網(wǎng)頁內(nèi)容挖掘、用戶行為挖掘等,說明其在互聯(lián)網(wǎng)領(lǐng)域的應(yīng)用。三、論述題(本大題共5個小題,共25分)1、(本題5分)對于城市交通流量數(shù)據(jù),論述如何運用數(shù)據(jù)分析進行擁堵預(yù)測和交通信號優(yōu)化,提高城市交通的運行效率。2、(本題5分)在金融科技領(lǐng)域,新興的金融產(chǎn)品和服務(wù)產(chǎn)生了大量復(fù)雜的數(shù)據(jù)。探討如何運用數(shù)據(jù)分析進行風(fēng)險評估、產(chǎn)品定價、市場監(jiān)測,并分析數(shù)據(jù)驅(qū)動的金融創(chuàng)新所帶來的機遇和挑戰(zhàn)。3、(本題5分)在物流配送的最后一公里問題上,如何利用數(shù)據(jù)分析來優(yōu)化配送方案、提高配送效率和降低配送成本?請詳細探討數(shù)據(jù)分析在解決最后一公里難題中的應(yīng)用、實際挑戰(zhàn)和創(chuàng)新解決方案。4、(本題5分)在醫(yī)療臨床研究中,如何通過數(shù)據(jù)分析來驗證新藥物的療效、評估治療方案的有效性和安全性?請詳細闡述數(shù)據(jù)分析的方法和流程,以及如何處理臨床試驗數(shù)據(jù)中的復(fù)雜性和不確定性。5、(本題5分)在電商平臺的供應(yīng)商管理中,數(shù)據(jù)分析可以評估供應(yīng)商績效和合作關(guān)系。以某電商平臺與供應(yīng)商的合作為例,討論如何運用數(shù)據(jù)分析來監(jiān)測供應(yīng)商的交貨及時性、產(chǎn)品質(zhì)量、服務(wù)水平,以及如何基于數(shù)據(jù)分析選擇和培育優(yōu)質(zhì)供應(yīng)商。四、案例分析題(本大題共3個小題,共30分)1、(本題10分)某視頻平臺擁有用戶觀看時長、視頻類型偏好、付費行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論