![第04講-數(shù)列求和-(分層精練)(解析版)_第1頁(yè)](http://file4.renrendoc.com/view6/M00/28/37/wKhkGWeVD_OAGnF6AAFK9sLf7go916.jpg)
![第04講-數(shù)列求和-(分層精練)(解析版)_第2頁(yè)](http://file4.renrendoc.com/view6/M00/28/37/wKhkGWeVD_OAGnF6AAFK9sLf7go9162.jpg)
![第04講-數(shù)列求和-(分層精練)(解析版)_第3頁(yè)](http://file4.renrendoc.com/view6/M00/28/37/wKhkGWeVD_OAGnF6AAFK9sLf7go9163.jpg)
![第04講-數(shù)列求和-(分層精練)(解析版)_第4頁(yè)](http://file4.renrendoc.com/view6/M00/28/37/wKhkGWeVD_OAGnF6AAFK9sLf7go9164.jpg)
![第04講-數(shù)列求和-(分層精練)(解析版)_第5頁(yè)](http://file4.renrendoc.com/view6/M00/28/37/wKhkGWeVD_OAGnF6AAFK9sLf7go9165.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第04講數(shù)列求和A夯實(shí)基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實(shí)基礎(chǔ)一、單選題1.(2023·全國(guó)·高二專(zhuān)題練習(xí))若數(shù)列滿(mǎn)足,,則其前2023項(xiàng)和為(
)A.1360 B.1358 C.1350 D.1348【答案】C【詳解】∵,,∴,故選:C.2.(2023·全國(guó)·高二專(zhuān)題練習(xí))已知數(shù)列的前項(xiàng)和為,若,則(
)A. B. C. D.【答案】C【詳解】解:,所以.故選:C.3.(2023·全國(guó)·高三專(zhuān)題練習(xí))設(shè),A.4 B.5 C.6 D.10【答案】B【詳解】由于,故原式.4.(2023秋·廣東深圳·高二統(tǒng)考期末)若數(shù)列的通項(xiàng)公式(),則的前項(xiàng)和(
)A. B. C. D.【答案】C【詳解】因?yàn)?,則,故選:C5.(2023·北京·統(tǒng)考模擬預(yù)測(cè))已知數(shù)列滿(mǎn)足,數(shù)列滿(mǎn)足,其中,則數(shù)列的前項(xiàng)和為(
)A. B. C. D.【答案】A【詳解】因?yàn)椋?,,,,,所以,所以,,,,,所以?shù)列的前項(xiàng)和為.故選:A.6.(2023·陜西安康·陜西省安康中學(xué)校考模擬預(yù)測(cè))在數(shù)列中,,,則(
)A. B. C. D.【答案】B【詳解】因?yàn)?,故可得,,…,,及累加可得,則,所以,則.故選:B.7.(2023春·廣東江門(mén)·高二??茧A段練習(xí))已知數(shù)列滿(mǎn)足,,則數(shù)列的前10項(xiàng)和為(
)A.31 B.77 C.171 D.217【答案】C【詳解】由,,得,當(dāng)時(shí),,所以,即,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以,所以,即為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),,所以,所以數(shù)列的前10項(xiàng)和為.故選:C.8.(2023秋·福建南平·高二統(tǒng)考期末)若數(shù)列的前n項(xiàng)和為,,則稱(chēng)數(shù)列是數(shù)列的“均值數(shù)列”.已知數(shù)列是數(shù)列的“均值數(shù)列”且,設(shè)數(shù)列的前n項(xiàng)和為,若對(duì)恒成立,則實(shí)數(shù)m的取值范圍為(
)A. B.C. D.【答案】B【詳解】由題意,即,∴時(shí),,又,∴時(shí),,,,易知是遞增數(shù)列,∴的最小值是(時(shí)取得),由題意,解得.故選:B.二、多選題9.(2023秋·江蘇·高二統(tǒng)考期末)分形幾何學(xué)是一門(mén)以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué),分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的,一個(gè)數(shù)學(xué)意義上的分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng)下面我們用分形的方法得到一系列圖形,如圖,在長(zhǎng)度為的線(xiàn)段上取兩個(gè)點(diǎn)、,使得,以為邊在線(xiàn)段的上方做一個(gè)正方形,然后擦掉,就得到圖形;對(duì)圖形中的最上方的線(xiàn)段作同樣的操作,得到圖形;依次類(lèi)推,我們就得到以下的一系列圖形設(shè)圖,圖,圖,圖,各圖中的線(xiàn)段長(zhǎng)度和為,數(shù)列的前項(xiàng)和為,則(
)A.B.C.恒成立D.存在正數(shù),數(shù)列的前項(xiàng)和恒成立【答案】BCD【詳解】由題意可得:圖最上方的線(xiàn)段長(zhǎng)度是圖最上方的線(xiàn)段長(zhǎng)度的,則圖最上方的線(xiàn)段長(zhǎng)度為,圖的線(xiàn)段長(zhǎng)度和比圖的線(xiàn)段長(zhǎng)度和多兩個(gè)圖最上方的線(xiàn)段長(zhǎng)度,則,故A錯(cuò)誤;∵,當(dāng)時(shí),則,即;當(dāng)時(shí),則符合上式;故,C正確;∵,∴,B正確;∵,則數(shù)列的前項(xiàng)和,故當(dāng)時(shí),則恒成立,D正確;故選:BCD.10.(2023春·江西吉安·高二永豐縣永豐中學(xué)??计谥校┮阎獢?shù)列為等差數(shù)列,,且,,是一個(gè)等比數(shù)列中的相鄰三項(xiàng),記,則的前項(xiàng)和可以是(
)A. B. C. D.【答案】BD【詳解】設(shè)等差數(shù)列的公差為,由,,是一個(gè)等比數(shù)列中的相鄰三項(xiàng),得,即,整理得,即或.或.當(dāng)時(shí),,當(dāng)時(shí),.若,則的前項(xiàng)和為;若,設(shè)的前項(xiàng)和為,則,,,則.故選:BD三、填空題11.(2023春·重慶沙坪壩·高二重慶八中??计谥校┮阎獢?shù)列{}的前n項(xiàng)和為,通項(xiàng)公式為,則__________【答案】2024【詳解】當(dāng)為奇數(shù)時(shí),當(dāng)為偶數(shù)時(shí),,所以.故答案為:.12.(2023春·新疆烏魯木齊·高二兵團(tuán)二中??茧A段練習(xí))若數(shù)列滿(mǎn)足,則___________.(用具體數(shù)值作答)【答案】【詳解】因?yàn)椋?,故答案?.四、解答題13.(2023春·北京東城·高二北京二中校考期中)已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,,,,(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和為;【答案】(1),;(2).【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,由題意可得,,故,解得.又,,所以,.故數(shù)列的通項(xiàng)公式為,的通項(xiàng)公式為.(2)由(1)得,所以.14.(2023春·河南·高二校聯(lián)考階段練習(xí))已知遞增數(shù)列滿(mǎn)足.(1)求;(2)設(shè)數(shù)列滿(mǎn)足,求的前項(xiàng)和.【答案】(1);(2)Sn=.【詳解】(1)由,得,即,若,則,又,所以數(shù)列為首項(xiàng)為7公差為4的等差數(shù)列;若,由,得,(舍去);綜上:;(2)由(1)知,,所以數(shù)列的前n項(xiàng)和,作差可得:,所以,故的前n項(xiàng)和為Sn=.B能力提升1.(2023春·河北石家莊·高二??茧A段練習(xí))已知函數(shù)f(x)=ax+b(a>0,且a≠1)的圖象經(jīng)過(guò)點(diǎn)P(1,3),Q(2,5).當(dāng)n∈N*時(shí),an=,記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)Sn=時(shí),n的值為(
)A.7 B.6C.5 D.4【答案】D【詳解】因?yàn)楹瘮?shù)f(x)=ax+b(a>0,且a≠1)的圖象經(jīng)過(guò)點(diǎn)P(1,3),Q(2,5),所以得或(舍去),所以f(x)=2x+1,所以an=,所以Sn=,令Sn=,得n=4.故選:D.2.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知數(shù)列滿(mǎn)足,,,記數(shù)列的前項(xiàng)和為,則(
)A. B. C. D.【答案】B【詳解】降標(biāo)相減可得即變形得:,降標(biāo)相減可得可算得,,即是等差數(shù)列,可得,所以,所以錯(cuò)位相減可得.所以.故選:B3.(2023·福建廈門(mén)·廈門(mén)外國(guó)語(yǔ)學(xué)校??寄M預(yù)測(cè))已知數(shù)列滿(mǎn)足.(1)證明為等差數(shù)列,并的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.【答案】(1)證明見(jiàn)解析,(2)【詳解】(1)證明:因?yàn)?,所以,即所以是以為首?xiàng),為公差的等差數(shù)列,則,所以;(2).4.(2023·陜西咸陽(yáng)·武功縣普集高級(jí)中學(xué)??寄M預(yù)測(cè))已知數(shù)列的前項(xiàng)和為,當(dāng)時(shí),.(1)證明:數(shù)列是等差數(shù)列;(2)若,數(shù)列的前項(xiàng)和為,若恒成立,求正整數(shù)的最大值.【答案】(1)證明見(jiàn)解析(2)8【詳解】(1)由題意知,當(dāng)時(shí),,所以,整理得:,即,所以數(shù)列是以1為公差的等差數(shù)列.(2)由,由(1)知是以2為首項(xiàng)、1為公差的等差數(shù)列,所以,所以,所以,①所以,②①-②得,所以,所以.因?yàn)?,所以,由于,?dāng)且僅當(dāng)時(shí)等號(hào)成立,故正整數(shù)的最大值為8.5.(2023·江蘇揚(yáng)州·揚(yáng)州中學(xué)??寄M預(yù)測(cè))若數(shù)列滿(mǎn)足,則稱(chēng)數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中n為正整數(shù),(1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;(2)設(shè),定義,且記,求數(shù)列的前n項(xiàng)和.【答案】(1)證明見(jiàn)解析(2)【詳解】(1)點(diǎn)在函數(shù)的圖象上,,是“平方遞推數(shù)列”.
因?yàn)?,?duì)兩邊同時(shí)取對(duì)數(shù)得,∴數(shù)列是以1為首項(xiàng),2為公比的等比數(shù)列.(2)由(1)知,
由數(shù)列的通項(xiàng)公式得,當(dāng)時(shí),;當(dāng)時(shí),.又由,得
當(dāng)且時(shí),;
當(dāng)且時(shí),,
綜上,C綜合素養(yǎng)1.(2023·全國(guó)·高二專(zhuān)題練習(xí))垛積術(shù)源于北宋科學(xué)家沈括首創(chuàng)的隙積術(shù),用來(lái)研究某種物品按一定規(guī)律堆積起來(lái)求其總數(shù)問(wèn)題,后世數(shù)學(xué)家又豐富和發(fā)展了這一成果某倉(cāng)庫(kù)中部分貨物堆放成如圖所示的“菱草垛”:貨物自上而下,第一層有1件,以后每一層比上一層多1件,最后一層有件,已知第一層貨物的單價(jià)是1萬(wàn)元,從第二層起,貨物的單價(jià)是上一層單價(jià)的.若這堆貨物的總價(jià)是萬(wàn)元,則的值為(
)A.7 B.8 C.9 D.10【答案】B【詳解】設(shè)這堆貨物的總價(jià)為萬(wàn)元,則①,②,由①-②,得,,所以,解得.故選:B2.(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))在數(shù)列中,,,,對(duì),恒成立,則的通項(xiàng)公式為_(kāi)_______;若,則數(shù)列的前n項(xiàng)和________.【答案】【詳解】由于,,所以成等差數(shù)列,又,,所以的公差,,,又,所以,,;故答案為:①,②.3.(2023·重慶萬(wàn)州·重慶市萬(wàn)州第二高級(jí)中學(xué)校考三模)意大利數(shù)學(xué)家傲波那契在研究兔子繁殖問(wèn)題時(shí)發(fā)現(xiàn)了數(shù)列1,1,2,3,5,8,13,…,數(shù)列中的每一項(xiàng)被稱(chēng)為斐波那契數(shù),記作Fn.已知,,(,且n>2).(1)若斐波那契數(shù)Fn除以4所得的余數(shù)按原順序構(gòu)成數(shù)列,則___________.(2)若,則___________.【答案】2697/-1+a【詳解】(1)由題意,,則,,則,由,則除以4的余數(shù)為,即,由,則除以4的余數(shù)為,即,由,則除以4的余數(shù)為,即,由,則除以4的余數(shù)為,即,由,則除以4的余數(shù)為,即,由,則除以4的余數(shù)為,即,故由斐波那契數(shù)除以4的余數(shù)按原順序構(gòu)成的數(shù)列,是以6為最小正周期的數(shù)列,因?yàn)?,所以;?)由斐波那契數(shù)的遞推關(guān)系可知:時(shí),且,,所以.故答案為:2697,a-14.(2023秋·江蘇無(wú)錫·高三統(tǒng)考期末)已知向量,,,則______,______.【答
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個(gè)人信用貸款合同標(biāo)準(zhǔn)版本2篇
- 出國(guó)留學(xué)銷(xiāo)售代表銷(xiāo)售總結(jié)報(bào)告
- 二零二五版牙科診所綠色環(huán)保材料使用協(xié)議3篇
- 二零二五年度公租房買(mǎi)賣(mài)合同模板及注意事項(xiàng)3篇
- 二零二五年度新能源項(xiàng)目居間合作協(xié)議4篇
- 二零二五年度個(gè)人商鋪買(mǎi)賣(mài)合同示范4篇
- 2025版贖樓擔(dān)保與房地產(chǎn)抵押貸款合同6篇
- 2025版物業(yè)管理公司人力資源外包合作協(xié)議書(shū)范本3篇
- 二零二五年度移動(dòng)支付解決方案?jìng)€(gè)人定制開(kāi)發(fā)合同4篇
- 二零二五年度高空作業(yè)施工圍板租賃與安裝服務(wù)合同2篇
- 人教版六年級(jí)數(shù)學(xué)上冊(cè)《應(yīng)用題》專(zhuān)項(xiàng)練習(xí)題(含答案)
- 第三單元 嘆錦繡中華書(shū)傳統(tǒng)佳話(huà)(教學(xué)設(shè)計(jì)) 三年級(jí)語(yǔ)文下冊(cè)大單元教學(xué)(部編版)
- 洛奇化石復(fù)原腳本
- 人教版三年級(jí)上冊(cè)豎式計(jì)算練習(xí)300題及答案
- 【“凡爾賽”網(wǎng)絡(luò)流行語(yǔ)的形成及傳播研究11000字(論文)】
- 建筑工程施工安全管理思路及措施
- 領(lǐng)導(dǎo)干部的情緒管理教學(xué)課件
- 初中英語(yǔ)-Unit2 My dream job(writing)教學(xué)課件設(shè)計(jì)
- 供貨方案及時(shí)間計(jì)劃安排
- 唐山動(dòng)物園景觀規(guī)劃設(shè)計(jì)方案
- 中國(guó)版梅尼埃病診斷指南解讀
評(píng)論
0/150
提交評(píng)論