下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁,共3頁云南醫(yī)藥健康職業(yè)學(xué)院《字體設(shè)計(jì)與軟件應(yīng)用》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的圖像增強(qiáng)旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對(duì)比度、有噪聲的醫(yī)學(xué)圖像需要進(jìn)行增強(qiáng)處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強(qiáng)技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波2、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域準(zhǔn)確分割出來。以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的分割方法簡(jiǎn)單高效,適用于所有類型的醫(yī)學(xué)圖像分割B.區(qū)域生長(zhǎng)法能夠根據(jù)像素的相似性進(jìn)行分割,但容易受到噪聲的影響C.圖割算法在處理復(fù)雜的圖像結(jié)構(gòu)時(shí)表現(xiàn)不佳,難以得到準(zhǔn)確的分割結(jié)果D.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中無法處理不同大小的病變區(qū)域3、當(dāng)進(jìn)行圖像的光流估計(jì)時(shí),假設(shè)要計(jì)算圖像中像素的運(yùn)動(dòng)速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動(dòng)信息4、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個(gè)特定的目標(biāo)。假設(shè)要跟蹤一個(gè)在運(yùn)動(dòng)場(chǎng)上快速移動(dòng)且形狀變化的運(yùn)動(dòng)員,同時(shí)存在其他相似物體的干擾。以下哪種目標(biāo)跟蹤算法在這種具有挑戰(zhàn)性的場(chǎng)景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C(jī).基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤5、在計(jì)算機(jī)視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時(shí)保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對(duì)抗網(wǎng)絡(luò)(GAN)D.自動(dòng)編碼器(Autoencoder)6、在計(jì)算機(jī)視覺中,人臉檢測(cè)和識(shí)別是重要的應(yīng)用方向。以下關(guān)于人臉檢測(cè)和識(shí)別的說法,不正確的是()A.人臉檢測(cè)旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識(shí)別是在檢測(cè)到人臉的基礎(chǔ)上,對(duì)人臉的身份進(jìn)行識(shí)別和驗(yàn)證C.深度學(xué)習(xí)方法在人臉檢測(cè)和識(shí)別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測(cè)和識(shí)別技術(shù)已經(jīng)非常成熟,不存在任何錯(cuò)誤率和安全隱患7、計(jì)算機(jī)視覺中的行人檢測(cè)是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個(gè)擁擠的公共場(chǎng)所中準(zhǔn)確檢測(cè)出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測(cè)方法在這種復(fù)雜環(huán)境下具有更高的檢測(cè)率和較低的誤檢率?()A.基于HOG特征的行人檢測(cè)B.基于深度學(xué)習(xí)的行人檢測(cè)C.基于運(yùn)動(dòng)信息的行人檢測(cè)D.基于形狀模板的行人檢測(cè)8、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像檢索任務(wù),例如在海量圖像庫中查找相似的圖像,以下哪種圖像表示方法可能對(duì)檢索效果產(chǎn)生重要影響?()A.全局特征B.局部特征C.深度學(xué)習(xí)特征D.以上都是9、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像超分辨率重建任務(wù),將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種深度學(xué)習(xí)模型可能在重建效果上表現(xiàn)出色?()A.SRCNNB.ESPCNC.DRCND.以上都是10、在計(jì)算機(jī)視覺的圖像分類任務(wù)中,假設(shè)數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種方法可以緩解這種不平衡對(duì)分類模型的影響?()A.對(duì)少數(shù)類進(jìn)行過采樣或?qū)Χ鄶?shù)類進(jìn)行欠采樣B.只使用多數(shù)類的樣本進(jìn)行訓(xùn)練C.不考慮類別不平衡,直接訓(xùn)練模型D.隨機(jī)選擇樣本進(jìn)行訓(xùn)練11、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中具有潛在應(yīng)用。假設(shè)要對(duì)一件受損的古代書畫進(jìn)行數(shù)字化修復(fù),以下關(guān)于計(jì)算機(jī)視覺在文物保護(hù)中的作用的描述,哪一項(xiàng)是不正確的?()A.可以通過圖像增強(qiáng)和去噪技術(shù)改善書畫的視覺效果B.利用圖像匹配和拼接技術(shù)還原殘缺的部分C.計(jì)算機(jī)視覺技術(shù)能夠完全恢復(fù)文物的原始狀態(tài),使其與未受損時(shí)一模一樣D.為文物修復(fù)專家提供輔助決策和參考依據(jù)12、假設(shè)我們要開發(fā)一個(gè)計(jì)算機(jī)視覺系統(tǒng),用于檢測(cè)生產(chǎn)線上產(chǎn)品的表面缺陷。由于產(chǎn)品的種類繁多、缺陷類型復(fù)雜,以下哪種方法可能需要更多的計(jì)算資源和時(shí)間來訓(xùn)練模型?()A.基于傳統(tǒng)機(jī)器學(xué)習(xí)的方法B.基于淺層神經(jīng)網(wǎng)絡(luò)的方法C.基于深度學(xué)習(xí)的方法D.基于模板匹配的方法13、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要估計(jì)一段視頻中物體的運(yùn)動(dòng)速度和方向,以下關(guān)于光流估計(jì)方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計(jì)方法在復(fù)雜場(chǎng)景中能夠準(zhǔn)確計(jì)算光流B.深度學(xué)習(xí)中的光流估計(jì)網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練C.光流估計(jì)的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時(shí)空信息的深度學(xué)習(xí)光流估計(jì)方法能夠提高估計(jì)的準(zhǔn)確性和魯棒性14、計(jì)算機(jī)視覺中的視覺注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機(jī)制的說法,不正確的是()A.視覺注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動(dòng)態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對(duì)無關(guān)信息的處理C.視覺注意力機(jī)制在圖像分類、目標(biāo)檢測(cè)和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機(jī)制的引入會(huì)增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度15、圖像分割是將圖像分成不同的區(qū)域或?qū)ο?。假設(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動(dòng)分割是最準(zhǔn)確的方法,不需要借助計(jì)算機(jī)算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學(xué)影像分割問題C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學(xué)圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無關(guān)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說明計(jì)算機(jī)視覺在海洋溢油監(jiān)測(cè)中的作用。2、(本題5分)簡(jiǎn)述圖像的色彩平衡調(diào)整方法。3、(本題5分)計(jì)算機(jī)視覺中如何進(jìn)行圖像預(yù)處理?4、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺中圖像分類的任務(wù)和方法。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用圖像識(shí)別算法,對(duì)不同樂器的圖像進(jìn)行分類和識(shí)別。2、(本題5分)基于計(jì)算機(jī)視覺的智能倉儲(chǔ)管理系統(tǒng),實(shí)現(xiàn)貨物的自動(dòng)識(shí)別和定位。3、(本題5分)利用圖像增強(qiáng)技術(shù),改善逆光拍攝圖像的質(zhì)量。4、(本題5分)運(yùn)用目標(biāo)檢測(cè)算法,從衛(wèi)星圖像中識(shí)別出特定的建筑物。5、(本題5分)運(yùn)用計(jì)算機(jī)視覺技術(shù),對(duì)船舶表面的銹蝕和損傷進(jìn)行檢測(cè)。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)分析某旅游景區(qū)的親子游宣傳物料設(shè)計(jì),探討其適合親子的項(xiàng)目介紹、安全保障措施、優(yōu)惠活動(dòng)如何吸引家庭游客。2、(本題10分)選取某時(shí)尚品牌的時(shí)尚品牌故事視頻設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 粽子生成課程設(shè)計(jì)意圖
- 二零二五版液化天然氣液化廠安全風(fēng)險(xiǎn)評(píng)估合同3篇
- 2025年度個(gè)人寵物醫(yī)療貸款及還款服務(wù)協(xié)議4篇
- 2024年學(xué)校培訓(xùn)管理制度
- 2024年學(xué)校安全大排查大整治工作方案
- 2025年金融理財(cái)產(chǎn)品售后風(fēng)險(xiǎn)控制合同2篇
- 2024行政復(fù)議案件調(diào)解與代理服務(wù)委托協(xié)議范本3篇
- 年度玉米酒精糟回收蛋白飼料成套設(shè)備(DDGS)市場(chǎng)分析及競(jìng)爭(zhēng)策略分析報(bào)告
- 年度娛樂、游覽用船舶戰(zhàn)略市場(chǎng)規(guī)劃報(bào)告
- 2025年度個(gè)人屋頂防水隔熱一體化合同2篇
- 2025年度杭州市固廢處理與資源化利用合同3篇
- 2024年安徽省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 部編版二年級(jí)下冊(cè)《道德與法治》教案及反思(更新)
- 充電樁項(xiàng)目運(yùn)營(yíng)方案
- 退休人員出國(guó)探親申請(qǐng)書
- 高中物理競(jìng)賽真題分類匯編 4 光學(xué) (學(xué)生版+解析版50題)
- 西方經(jīng)濟(jì)學(xué)-高鴻業(yè)-筆記
- 幼兒園美術(shù)教育研究策略國(guó)內(nèi)外
- 2024屆河南省五市高三第一次聯(lián)考英語試題及答案
- 孕婦學(xué)校品管圈課件
- 《愿望的實(shí)現(xiàn)》交流ppt課件2
評(píng)論
0/150
提交評(píng)論