![2024年八年級(jí)數(shù)學(xué)下學(xué)期期末模擬卷3(浙教版)_第1頁(yè)](http://file4.renrendoc.com/view15/M01/03/0C/wKhkGWegLSmAcHwUAAHDqC2fVNw408.jpg)
![2024年八年級(jí)數(shù)學(xué)下學(xué)期期末模擬卷3(浙教版)_第2頁(yè)](http://file4.renrendoc.com/view15/M01/03/0C/wKhkGWegLSmAcHwUAAHDqC2fVNw4082.jpg)
![2024年八年級(jí)數(shù)學(xué)下學(xué)期期末模擬卷3(浙教版)_第3頁(yè)](http://file4.renrendoc.com/view15/M01/03/0C/wKhkGWegLSmAcHwUAAHDqC2fVNw4083.jpg)
![2024年八年級(jí)數(shù)學(xué)下學(xué)期期末模擬卷3(浙教版)_第4頁(yè)](http://file4.renrendoc.com/view15/M01/03/0C/wKhkGWegLSmAcHwUAAHDqC2fVNw4084.jpg)
![2024年八年級(jí)數(shù)學(xué)下學(xué)期期末模擬卷3(浙教版)_第5頁(yè)](http://file4.renrendoc.com/view15/M01/03/0C/wKhkGWegLSmAcHwUAAHDqC2fVNw4085.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
期末模擬卷(3)
一、選擇題(每小題2分,共20分)
1.(2分)下列計(jì)算正確的是()
A.B.~yJ~2.—2,C.5,\/3X5^/2=5,S/QD.J『_G)2=-6
2.(2分)用配方法解方程2x「6x-1=0時(shí),須要先將此方程化成形如(x+加2=n(/2>0)的形式,則下列配方
法正確的是()
A.(x-3)2=AB.(x-旦)2=A
222
C.(x-旦)2=2D.(x--)2=-lX
224
3.(2分)四邊形/皿中,對(duì)角線/C、物相交于點(diǎn)。,給出下列四個(gè)條件:
①AD〃BC;②AABC;③O4=0C;④OB=OD
從中任選兩個(gè)條件,能使四邊形485為平行四邊形的選法有()
A.3種B.4種C.5種D.6種
4.(2分)已知必<0,關(guān)于x的方程(x-2)2-0=0的根的狀況是()
A.有兩個(gè)不相等的實(shí)數(shù)根B.有兩個(gè)相等的實(shí)數(shù)根
C.沒(méi)有實(shí)數(shù)根D.有兩個(gè)實(shí)數(shù)根
5.(2分)對(duì)于實(shí)數(shù)a,b,先定義一種新運(yùn)算"★"如下:當(dāng)時(shí),a'kbuJ+ab;當(dāng)a<6時(shí),a*b=/+ab;
若2★m=24,則實(shí)數(shù)0等于()
A.10B.4C.4或-6D.4或-6或10
6.(2分)李老師在隨堂練習(xí)階段展示了6道選擇題(規(guī)定每道題3分)讓學(xué)生解答,李老師為檢測(cè)本節(jié)課的教學(xué)
效果就隨機(jī)抽查了10位學(xué)生的解答狀況,并填寫(xiě)好如下課堂教學(xué)效果檢測(cè)統(tǒng)計(jì)表:
學(xué)生號(hào)12345678910
成果/1518918121215151818
分
此時(shí),李老師最關(guān)切的數(shù)據(jù)是()
A.平均數(shù)B.眾數(shù)
C.中位數(shù)D.最高分與最低分的差
1n
7.(2分)已知4(-1,yi),B(2,?。﹥牲c(diǎn)在雙曲線y=0+2上,且yi>y2,則0的取值范圍是()
x
A./?<0B.ffl>0C.ni>--D.m<--
22
8.(2分)如圖,直線/是矩形/及/的一條對(duì)稱軸,點(diǎn)?是直線/上一點(diǎn),且使得△融8和△咖均為等
腰三角形,則滿意條件的點(diǎn)戶共有()個(gè).
A.1B.2C.3D.5
9.(2分)如圖,在菱形46(/中,4?=4,//=120°,點(diǎn)戶,Q,4分別為線段8GCD,M上的隨意一點(diǎn),貝U
的最小值為()
C.4D.273+2
10.(2分)如圖a是長(zhǎng)方形紙帶,AB=2,AD=8,AE=CF,將紙帶沿廝折疊成圖6,再沿9折疊成圖c,若圖c
中BE//DG,則熊的長(zhǎng)是()
D.苧或苧
A.1B.3C6-灰
2'~17
二、填空題(每小題3分,共30分)
11.(3分)若代數(shù)式」運(yùn)有意義,則x的取值范圍為.
x-3
12.(3分)一組數(shù)據(jù)25,26,26,24,24,25的標(biāo)準(zhǔn)差=
13.(3分)已知命題“假如一個(gè)平行四邊形的兩條對(duì)角線相互垂直,那么這個(gè)平行四邊形是菱形”,寫(xiě)出它的逆命
題:.
14.(3分)己知關(guān)于x的方程后-(0-1)x+研2=0有兩個(gè)相等的實(shí)數(shù)根,則〃的值為.
15.(3分)我們用反證法證明命題“在一個(gè)三角形中,至少有一個(gè)內(nèi)角小于或等于60°時(shí),應(yīng)先假設(shè).
16.(3分)受“削減稅收,適當(dāng)補(bǔ)貼”政策的影響,某市居民購(gòu)房熱忱大幅提高.據(jù)調(diào)查,2024年1月該市宏鑫
房地產(chǎn)公司的住房銷售量為100套,3月份的住房銷售量為169套.假設(shè)該公司這兩個(gè)月住房銷售量的增長(zhǎng)率為
x,依據(jù)題意所列方程為.
17.(3分)如圖,在矩形/r力中,對(duì)角線47、M相交于點(diǎn)。,點(diǎn)£、尸分別是40、加的中點(diǎn),若AB=6cm,BC=
8cm,則△/仔'的周長(zhǎng)=cm.
AD
18.(3分)將兩個(gè)相同的三角板如圖所示拼成一個(gè)四邊形/氏/(其中兩條較長(zhǎng)的直角邊緊貼無(wú)間隙),若直角邊46
19.(3分)如圖1,△/回是一張等腰直角三角形彩色紙,AC=BC,將斜邊上的高切五等分,然后裁出4張寬度相
等的長(zhǎng)方形紙條.若用這4張紙條剛好可以為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如圖2,則正方形美術(shù)
作品與鑲邊后的作品的面積之比為.
20.(3分)如圖,平面直角坐標(biāo)系中,。為坐標(biāo)原點(diǎn),正方形483的兩邊如、%分別與x軸、y軸重合,點(diǎn)戶是
位的中點(diǎn),過(guò)點(diǎn)戶的反比例函數(shù)/=區(qū)的圖象交對(duì)角線如與點(diǎn)?!?0的面積為2,求"的值為.
三、解答題(本大題共7小題,共50分)
21.(6分)(1)計(jì)算:乎(712+6^T-V48)
(2)解方程:27+12^-6=0.
22.(6分)如圖,在平面直角坐標(biāo)系xOy中,菱形/頷的四個(gè)頂點(diǎn)都在格點(diǎn)上,且點(diǎn)/、6的坐標(biāo)分別為(1,2)、
(3,1)請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出點(diǎn)a,的坐標(biāo);
(2)畫(huà)出菱形切關(guān)于y軸對(duì)稱的四邊形4AG",并寫(xiě)出點(diǎn)4的坐標(biāo);
(3)畫(huà)出菱形483關(guān)于原點(diǎn)。對(duì)稱的四邊形44G打,并寫(xiě)出點(diǎn)民的坐標(biāo).
DFLAC,垂足分別為£,F.
(2)求證:四邊形"破是平行四邊形.
若單一個(gè)出水口,排水速度r(B/力)與排完水池中的水所用的時(shí)間t(A)
(1)在如圖的直角坐標(biāo)系中,用描點(diǎn)法畫(huà)出相應(yīng)函數(shù)的圖象;
(2)寫(xiě)出t與「之間的函數(shù)關(guān)系式;
(3)若5右內(nèi)排完水池中的水,那么每小時(shí)的排水量至少應(yīng)當(dāng)是多少?
t(h)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
123456789101U2131415yfm^/h)
25.(8分)某市籃球隊(duì)到市一中選拔一名隊(duì)員.教練對(duì)王亮和李剛兩名同學(xué)進(jìn)行5次3分投籃測(cè)試,每人每次投
10個(gè)球,下圖記錄的是這兩名同學(xué)5次投籃中所投中的個(gè)數(shù).
2345測(cè)試序號(hào)
李剛
(1)請(qǐng)你依據(jù)圖中的數(shù)據(jù),填寫(xiě)下表;
姓名平均數(shù)眾數(shù)方差
王亮7
李剛72.8
(2)你認(rèn)為誰(shuí)的成果比較穩(wěn)定,為什么?
(3)若你是教練,你準(zhǔn)備選誰(shuí)?簡(jiǎn)要說(shuō)明理由.
26.(9分)如圖1,某校有一塊菱形空地/皿,//=60。,AB=^m,現(xiàn)安排在內(nèi)部修建一個(gè)四個(gè)頂點(diǎn)分別落在菱
形四條邊上的矩形魚(yú)池防祝其余部分種花草,園林公司修建魚(yú)池,草坪的造價(jià)分別為■(元)、亥(元)與修
建面積s(米2)之間的函數(shù)關(guān)系如圖2所示.
(1)若矩形魚(yú)池廝掰恰好為正方形,則/£=.
(2)若矩形魚(yú)池環(huán)第的面積是300盜方,求廝的長(zhǎng)度;
(3)"的長(zhǎng)度為多少時(shí),修建的魚(yú)池和草坪的總造價(jià)最低,最低造價(jià)為多少元(次取1.732,結(jié)果精確到元)
27.(10分)如圖1,戶是反比例函數(shù)尸且(x>0)上的一個(gè)動(dòng)點(diǎn),過(guò)?作軸,如,y軸.
x
(1)若矩形如期的長(zhǎng)是寬的兩倍,求尸點(diǎn)坐標(biāo);
(2)若矩形對(duì)角線么?=6,求矩形勿陽(yáng)的周長(zhǎng);
(3)如圖2,£在如上,且BE=2PE,若£關(guān)于直線的對(duì)稱點(diǎn)尸恰好落在坐標(biāo)軸上,連結(jié)/£,AF,EF,求4
期末模擬卷(3)
參考答案與試題解析
一、選擇題(每小題2分,共20分)
1.(2分)下列計(jì)算正確的是()
A.B.5/3—V2=2C.XD.J(_6)2=-6
【分析】利用二次根式的運(yùn)算法則計(jì)算.
【解答】解:/、錯(cuò)誤,不是同類二次根式,不能合并;
B、正確,近+2=F=2;
C、錯(cuò)誤,要留意系數(shù)與系數(shù)相乘,根式與根式相乘,應(yīng)等于25代;
A錯(cuò)誤,算術(shù)平方根的結(jié)果是一個(gè)非負(fù)數(shù),應(yīng)當(dāng)?shù)扔?;
故選:B.
2.(2分)用配方法解方程29-6x-1=0時(shí),須要先將此方程化成形如(x+加'A(〃>0)的形式,則下列配方
法正確的是()
2
A.(x-3)2=2B.(x-3)==2
~22~2
2
C.(x--)2=2D.(x-旦)=二旦
22T
【分析】依據(jù)配方法即可求出答案.
【解答】解:由題意可知:2Y-&x-1=0
2(/-3x)=1
424
(X-S)一旦
24
故選:D.
3.(2分)四邊形263中,對(duì)角線AG被相交于點(diǎn)。,給出下列四個(gè)條件:
?AD//BC-,②AD=BC;③OA=OC;?OB=OD
從中任選兩個(gè)條件,能使四邊形46切為平行四邊形的選法有()
A.3種B.4種C.5種D.6種
【分析】依據(jù)題目所給條件,利用平行四邊形的判定方法分別進(jìn)行分析即可.
【解答】解:①②組合可依據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形判定出四邊形/及方為平行四邊形;
③④組合可依據(jù)對(duì)角線相互平分的四邊形是平行四邊形判定出四邊形465為平行四邊形;
①③可證明△/"匡△四。,進(jìn)而得到AD=CB,可利用一組對(duì)邊平行且相等的四邊形是平行四邊形判定出四邊形
46切為平行四邊形;
①④可證明進(jìn)而得到AD=CB,可利用一組對(duì)邊平行且相等的四邊形是平行四邊形判定出四邊形
力以力為平行四邊形;
???有4種可能使四邊形A65為平行四邊形.
故選:B.
4.(2分)已知力<0,關(guān)于x的方程(x-2)z-0=0的根的狀況是()
A.有兩個(gè)不相等的實(shí)數(shù)根B.有兩個(gè)相等的實(shí)數(shù)根
C.沒(méi)有實(shí)數(shù)根D.有兩個(gè)實(shí)數(shù)根
【分析】將方程變形為一般式,再依據(jù)根的判別式△=6<4ac=4勿<0,即可得出原方程無(wú)解.
【解答】解:原方程可變形為V-4x+4-勿=0,
(-4)2-4(4-加=4J?<0,
...方程(x-2)2-0=0沒(méi)有實(shí)數(shù)根.
故選:C.
5.(2分)對(duì)于實(shí)數(shù)a,b,先定義一種新運(yùn)算"★”如下:當(dāng)時(shí),crkb—a+ab-,當(dāng)a<6時(shí),a'kb—lf+ab^
若2支勿=24,則實(shí)數(shù)0等于()
A.10B.4C.4或-6D.4或-6或10
【分析】依據(jù)題意,(1)勿(2時(shí),2?+27=24;(2)卬>2時(shí),而+2m=24;據(jù)此求出勿的值是多少即可.
【解答】解:?.,當(dāng)a26時(shí),aifb—a+ab-,當(dāng)a<6時(shí),a^kb—lj+ab,
:.⑴辰2時(shí),242片24,
解得m=10,不滿意題意.
(2)加>2時(shí),君+20=24,
解得m=-6或4,
-6<2,
/.R=4.
綜上,可得:0=4.
故選:B.
6.(2分)李老師在隨堂練習(xí)階段展示了6道選擇題(規(guī)定每道題3分)讓學(xué)生解答,李老師為檢測(cè)本節(jié)課的教學(xué)
效果就隨機(jī)抽查了10位學(xué)生的解答狀況,并填寫(xiě)好如下課堂教學(xué)效果檢測(cè)統(tǒng)計(jì)表:
學(xué)生號(hào)12345678910
成果/1518918121215151818
分
此時(shí),李老師最關(guān)切的數(shù)據(jù)是()
A.平均數(shù)B.眾數(shù)
C.中位數(shù)D.最高分與最低分的差
【分析】依據(jù)平均數(shù)、眾數(shù)、中位數(shù)的特點(diǎn)得出即可.
【解答】解:在這個(gè)問(wèn)題中,李老師應(yīng)最關(guān)切的數(shù)據(jù)是眾數(shù),即大多數(shù)學(xué)生考的狀況,
故選:B.
7.(2分)己知J(-1,ji),B(2,姓)兩點(diǎn)在雙曲線y=01+2m上,且弘>姓,則m的取值范圍是()
x
A.ffl<0B.m>0C.ni>--D.m<--
22
【分析】依據(jù)反比例函數(shù)的增減性即可得出結(jié)論.
【解答】解::-1<2,/>姓,
;.3+2勿<0,解得fflC-旦.
2
故選:D.
8.(2分)如圖,直線/是矩形/式》的一條對(duì)稱軸,22=2/6,點(diǎn)戶是直線/上一點(diǎn),且使得△為6和△陽(yáng)C均為等
腰三角形,則滿意條件的點(diǎn)尸共有()個(gè).
A.1B.2C.3D.5
【分析】如圖,設(shè)直線/交/,于交";于辦只要證明四邊形/能&是正方形,可知△/能,△/隴是等腰
三角形,作46的垂直平分線交直線/于總,則△/期是等腰三角形,再考慮△陽(yáng)C是等腰三角形,即可解決問(wèn)
題.
【解答】解:如圖,設(shè)直線/交/,于交房于幾
,/四邊形ABCD是矩形,直線/是對(duì)稱軸,
.,?四邊形ABP出是正方形,
':AD=2AB,
:.AP^APi,
,四邊形/"A是正方形,
△/明是等腰三角形,
作46的垂直平分線交直線/于月,則△4即是等腰三角形,
同時(shí)滿意△吻是等腰三角形的點(diǎn)只有4,月.
,滿意條件的點(diǎn)戶共有2個(gè),
故選:B.
9.(2分)如圖,在菱形/式》中,34,N/=120°,點(diǎn)RQ,4分別為線段8GCD,M上的隨意一點(diǎn),貝U
A.2B.2MC.4D.2T+2
【分析】依據(jù)軸對(duì)稱確定最短路途問(wèn)題,作點(diǎn)尸關(guān)于劭的對(duì)稱點(diǎn)尸,,連接90與加的交點(diǎn)即為所求的點(diǎn)反
然后依據(jù)直線外一點(diǎn)到直線的全部連線中垂直線段最短的性質(zhì)可知P0,切時(shí),冊(cè)"的最小值,然后求解即
可.
【解答】解:作點(diǎn)戶關(guān)于劭的對(duì)稱點(diǎn)嚴(yán),作嚴(yán)QLCD交BD千K,交切于。
":AB=^,ZA=12.0°,
...點(diǎn)P'到"的距離為4X返=2?,
2
.,.冊(cè)數(shù)的最小值為2?,
10.(2分)如圖a是長(zhǎng)方形紙帶,AB=2,4H8,AE=CF,將紙帶沿"折疊成圖6,再沿斯折疊成圖c,若圖c
中龐〃加,則/£的長(zhǎng)是()
A.1B,2C.6-娓D.6-企或6g
2222
【分析】依據(jù)折疊的性質(zhì)和平行線的性質(zhì)得到/9求得EG=GF,連接班DG,過(guò)少作用吐即于〃,
FNLDG千N,得到/8=切=切=所依據(jù)全等三角形的性質(zhì)得到班'=M得到龐=£G,BM=GM,設(shè)/£=x,BM
=MG=CF=x,依據(jù)勾股定理即可得到結(jié)論.
【解答】解::矩形對(duì)邊AD//BC,
:.ABFE=/DEF,
:.EG=GF,
連接龐,DG,
過(guò)£作曾工斯于弘FN1DG于N,
則AB=EM=CD=FN,
':BE//DG,
:.AEBM=ZFGN,
,ZBME=ZGNF=90°
在△網(wǎng)/與△磁V中,,ZEBM=ZFGN,
EM=FN
:./\BEM^/\GFN,
:.BE=GF,
:.BE=EG,
設(shè)AE—x,
:.BM=MG=CF=x,
:.BE=GF=B-3x,
.*./+22=(8-3x)2,
;“=殳返或(身返舍棄)
22
;./£=」一遍,
2
故選:C.
B"GF
圖c
二、填空題(每小題3分,共30分)
11.(3分)若代數(shù)式Y(jié)運(yùn)有意義,則X的取值范圍為x22且XW3.
x-3
【分析】依據(jù)分式的分母不為零(x-3=0)、二次根式的被開(kāi)方數(shù)是非負(fù)數(shù)(x-2》0)來(lái)解答.
【解答】解:依據(jù)題意,得
x-220,且x-3#0,
解得,x22且xW3;
故答案是:x22且xW3.
12.(3分)一組數(shù)據(jù)25,26,26,24,24,25的標(biāo)準(zhǔn)差=返.
一且一
【分析】先求出這組數(shù)據(jù)的平均數(shù),再依據(jù)方差公式求出這組數(shù)據(jù)的方差,再依據(jù)標(biāo)準(zhǔn)差的定義即可求出答案.
【解答】組數(shù)據(jù)的平均數(shù)是:(25+26+26+24+24+25)+6=25,
則這組數(shù)據(jù)的方差是:工[(25-25)2+(26-25)2+(26-25)2+(24-25)2+(24-25)2+(25-25)4=2,
63
標(biāo)準(zhǔn)差是:潟=坐;
故答案為:逅.
3
13.(3分)已知命題“假如一個(gè)平行四邊形的兩條對(duì)角線相互垂直,那么這個(gè)平行四邊形是菱形”,寫(xiě)出它的逆命
題:假如一個(gè)平行四邊形是菱形,那么這個(gè)平行四邊形的兩條對(duì)角線相互垂直.
【分析】把一個(gè)命題的條件和結(jié)論互換就得到它的逆命題.
【解答】解:命題“假如一個(gè)平行四邊形的兩條對(duì)角線相互垂直,那么這個(gè)平行四邊形是菱形”的逆命題是“假
如一個(gè)平行四邊形是菱形,那么這個(gè)平行四邊形的兩條對(duì)角線相互垂直”.
14.(3分)已知關(guān)于x的方程x?-(0-1)x+研2=0有兩個(gè)相等的實(shí)數(shù)根,則〃的值為-1或7.
【分析】依據(jù)判別式即可求出"的值.
【解答】解:由題意可知:△=(/?-1)2-4(加2)=0,
化簡(jiǎn)可得:n}-6m-7=Q
解得:m=7或m=-1
故答案為:-1或7
15.(3分)我們用反證法證明命題“在一個(gè)三角形中,至少有一個(gè)內(nèi)角小于或等于60°時(shí),應(yīng)先假設(shè)三個(gè)角
都大于60°.
【分析】熟記反證法的步驟,干脆填空即可.
【解答】解:依據(jù)反證法的步驟,第一步應(yīng)假設(shè)結(jié)論的反面成立,即三角形的三個(gè)內(nèi)角都大于60°.
16.(3分)受“削減稅收,適當(dāng)補(bǔ)貼”政策的影響,某市居民購(gòu)房熱忱大幅提高.據(jù)調(diào)查,2024年1月該市宏鑫
房地產(chǎn)公司的住房銷售量為100套,3月份的住房銷售量為169套.假設(shè)該公司這兩個(gè)月住房銷售量的增長(zhǎng)率為
x,依據(jù)題意所列方程為100(1+x)2=169.
【分析】依據(jù)年1月該市宏鑫房地產(chǎn)公司的住房銷售量為100套,3月份的住房銷售量為169套.設(shè)該公司這兩
個(gè)月住房銷售量的增長(zhǎng)率為x,可以列出相應(yīng)的方程.
【解答】解:由題意可得,
100(1+x)2=169,
故答案為:100(1+故2=169.
17.(3分)如圖,在矩形/應(yīng)力中,對(duì)角線然、M相交于點(diǎn)。,點(diǎn)、E、6分別是40、皿的中點(diǎn),若AB=6cm,BC=
【分析】先求出矩形的對(duì)角線4G依據(jù)中位線定理可得出能繼而可得出△/用的周長(zhǎng).
【解答】解:在△抽中,
RtCJ(7=JAB2+BC2=10cm,
■:點(diǎn)、E、戶分別是的中點(diǎn),
哥1是△/切的中位線,EF=—OD=—BD=l-AC=—cm,AF=—AD=—BC=4cm,AE=—A0=—AC=—cm,
244222242
的周長(zhǎng)=AE+AF+EF^9cm.
故答案為:9.
18.(3分)將兩個(gè)相同的三角板如圖所示拼成一個(gè)四邊形應(yīng)?切(其中兩條較長(zhǎng)的直角邊緊貼無(wú)間隙),若直角邊
=4加,則點(diǎn)/與點(diǎn)C之間的距離為8cm(結(jié)果帶根號(hào))
【分析】先依據(jù)題意可得四邊形亞?切是矩形,則點(diǎn)/與點(diǎn)C之間的距離等于劭的長(zhǎng),依據(jù)含30°的直角三角
形的性質(zhì)即可求解.
【解答】解:,??將兩個(gè)相同的三角板如圖所示拼成一個(gè)四邊形A8切(其中兩條較長(zhǎng)的直角邊緊貼無(wú)間隙),
...四邊形465是矩形,
...點(diǎn)/與點(diǎn)。之間的距離等于助的長(zhǎng),
:直角邊/6=4M,ZADB=30°,
.,.點(diǎn)A與點(diǎn)C之間的距離為8cm.
故答案為:8.
19.(3分)如圖1,△/回是一張等腰直角三角形彩色紙,AC=BC,將斜邊上的高切五等分,然后裁出4張寬度相
等的長(zhǎng)方形紙條.若用這4張紙條剛好可以為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如圖2,則正方形美術(shù)
作品與鑲邊后的作品的面積之比為49.
圖2
【分析】利用相像三角形的性質(zhì)求出每個(gè)紙條的長(zhǎng),將其相加,易得紙片的寬度,從而計(jì)算出正方形的邊長(zhǎng),從
而計(jì)算面積即可.
【解答】解:是等腰直角三角形,設(shè)AC=BC=a,如圖所示:
??AB--
???切是斜邊上的高,
:.CD=昱a,
2_
于是紙條的寬度為:返a,
10
.?.EF一_—1,
AB5
:.EF=?a,
5_
同理,GH=2叵a,
5
5
5
紙條的總長(zhǎng)度為:2近a,
鑲邊后的作品的正方形的邊長(zhǎng)為:返a+返a=3返a,
2105
.?.面積為工
25
?.?正方形美術(shù)作品的邊長(zhǎng)=返@-返a=2Z0&a,
2105
.?.面積為避-a?,
25
則正方形美術(shù)作品與鑲邊后的作品的面積之比為:4:9,
故答案為:4:9.
圖2
20.(3分)如圖,平面直角坐標(biāo)系中,。為坐標(biāo)原點(diǎn),正方形Z6CO的兩邊以、分別與x軸、p軸重合,點(diǎn)戶是
%的中點(diǎn),過(guò)點(diǎn)尸的反比例函數(shù)y=K的圖象交對(duì)角線如與點(diǎn)0,的面積為2,求4的值為,退
【分析】過(guò)點(diǎn)0作軸于點(diǎn)依據(jù)正方形的性質(zhì)可設(shè)點(diǎn)8(a,a)、點(diǎn)0(6,b'),則點(diǎn)尸為(工a,a),依
2
據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合△30的面積為2,求出6?的值,進(jìn)而得出孑的值.
【解答】解:過(guò)點(diǎn)0作四_Ly軸于點(diǎn)如圖所示.
:四邊形為正方形,初上了軸,
...△勿。為等腰直角三角形,
.?.設(shè)點(diǎn)8?,a),點(diǎn)0(6,b)(a>0,6>0),則點(diǎn)尸為(_la,a).
2
;點(diǎn)、P、。在反比例函數(shù)尸區(qū)的圖象上,
X
k=—a=t),
2
:.a=y[2b,
又S^COQ=—ab=2,
2
?,?爐=2后,
k=2y[2,
故答案為:2血.
三、解答題(本大題共7小題,共50分)
21.(6分)⑴計(jì)算:乎(V12+6^T-V48)
(2)解方程:2x+12x-6=0.
【分析】(1)先把二次根式化為最簡(jiǎn)二次根式,然后把括號(hào)內(nèi)合并后進(jìn)行二次根式的乘法運(yùn)算;
(2)利用配方法解方程.
【解答】解:(10原式=返(2?+空-4?)
23
=運(yùn)乂(一組
23
=_2娓.
-,
3
(2)7+6%=3,
/+6A+9=12,
(x+3)2=12,
x+3=±2W,
所以荀=-3+2Xi=-2-
22.(6分)如圖,在平面直角坐標(biāo)系xOy中,菱形4?切的四個(gè)頂點(diǎn)都在格點(diǎn)上,且點(diǎn)46的坐標(biāo)分別為(1,2)、
(3,1)請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出點(diǎn)C、。的坐標(biāo);
(2)畫(huà)出菱形⑦關(guān)于了軸對(duì)稱的四邊形46上幾并寫(xiě)出點(diǎn)4的坐標(biāo);
(3)畫(huà)出菱形46切關(guān)于原點(diǎn)。對(duì)稱的四邊形4兄GA,并寫(xiě)出點(diǎn)用的坐標(biāo).
【分析】(1)依據(jù)圖象即可得到結(jié)論;
(2)依據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)畫(huà)出四邊形A18CB即可;
(3)依據(jù)關(guān)于原點(diǎn)。對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)即可得到四邊形切關(guān)于原點(diǎn)。對(duì)稱的四邊形4民G2.
【解答】解:⑴C(5,2),D(3,3);
(2)如圖所示,四邊形481aq即為所求;4(-1,2);
(3)如圖所示,四邊形4笈G2即為所求;屋(-3,-1).
23.(5分)如圖,/C是口5的一條對(duì)角線,BELAC,DFLAC,垂足分別為£,F.
(1)求證:叢ADF”ACBE;
(2)求證:四邊形加旗是平行四邊形.
【分析】(1)由平行四邊形的性質(zhì)得出AD//BC,AD=BC,得出內(nèi)錯(cuò)角相等/的尸=為,證出/加刃=/儂=
90°,由44s證明△/勿白△鹿即可;
(2)由(1)得:叢ADF9叢CBE,由全等三角形的性質(zhì)得出加=龐,再由龐〃明即可得出四邊形"物'是平行
四邊形.
【解答】(1)證明:二?四邊形4?必是平行四邊形,
:.AD//BC,AD=BC,
:./DAF=/BCE,
:BELAC,DFVAC,
:.BE//DF,NAFD=/CEB=9Q°,
2DAF=NBCE
在△力加和△鹿中,,ZAFD=ZCEB
AD=CB
A:△ADF^XCBE(AAS>,
(2)解:如圖所示:由(1)得:叢ADFN叢CBE,
:.DF=BE,
':BE//DF,
四邊形力成是平行四邊形.
24.(6分)某一蓄水池中有水若干噸,若單一個(gè)出水口,排水速度丫(宮")與排完水池中的水所用的時(shí)間tQh)
(3)若5分內(nèi)排完水池中的水,那么每小時(shí)的排水量至少應(yīng)當(dāng)是多少?
【分析】(1)依據(jù)表格中全部數(shù)對(duì)確定點(diǎn)的坐標(biāo),利用描點(diǎn)法作圖即可;
(2)依據(jù)廿=12確定兩個(gè)變量之間的函數(shù)關(guān)系即可;
(3)依據(jù)0<tW5時(shí),0<々2.4,從而確定最小排出量即可.
【解答】解:(1)函數(shù)圖象如圖所示.…2分
(2)依據(jù)圖象的形態(tài),選擇反比例函數(shù)模型進(jìn)行嘗試.
設(shè)V=K(AWO),選(1,12)的坐標(biāo)代入,得4=12,
t
t
:其余點(diǎn)的坐標(biāo)代入驗(yàn)證,符合關(guān)系式〃=衛(wèi).
t
...所求的函數(shù)解析式是(t>0).
t
(3)由題意得:當(dāng)0<tW5時(shí),y22.4.即每小時(shí)的排水量至少應(yīng)當(dāng)是2.4/.
25.(8分)某市籃球隊(duì)到市一中選拔一名隊(duì)員.教練對(duì)王亮和李剛兩名同學(xué)進(jìn)行5次3分投籃測(cè)試,每人每次投
10個(gè)球,下圖記錄的是這兩名同學(xué)5次投籃中所投中的個(gè)數(shù).
(1)請(qǐng)你依據(jù)圖中的數(shù)據(jù),填寫(xiě)下表;
姓名平均數(shù)眾數(shù)方差
王亮7
李剛72.8
(2)你認(rèn)為誰(shuí)的成果比較穩(wěn)定,為什么?
(3)若你是教練,你準(zhǔn)備選誰(shuí)?簡(jiǎn)要說(shuō)明理由.
【分析】(1)依據(jù)平均數(shù)的定義,計(jì)算5次投籃成果之和與5的商即為王亮每次投籃平均數(shù),再依據(jù)方差公式計(jì)
算王亮的投籃次數(shù)的方差;依據(jù)眾數(shù)定義,李剛投籃出現(xiàn)次數(shù)最多的成果即為其眾數(shù);
(2)方差越小,乘積越穩(wěn)定.
(3)從平均數(shù)、眾數(shù)、方差等不同角度分析,可得不同結(jié)果,關(guān)鍵是看參賽的須要.
【解答】解:(1)王亮5次投籃的平均數(shù)為:(6+7+8+7+7)+5=7個(gè),
王亮的方差為:6=工[(6-7)2+(7-7)2+-+(7-7)1=0.4個(gè).
5
李剛5次投籃中,有1次投中4個(gè),2次投中7個(gè),1次投中8個(gè),1次投中9個(gè),故7為眾數(shù);
姓名平均數(shù)眾數(shù)方差
王亮770.4
李剛772.8
(2)兩人的平均數(shù)、眾數(shù)相同,從方差上看,王亮投籃成果的方差小于李剛投籃成果的方差.所以王亮的成果
較穩(wěn)定.
(3)選王亮的理由是成果較穩(wěn)定,選李剛的理由是他具有發(fā)展?jié)摿?,李剛越到后面投中?shù)越多.
26.(9分)如圖1,某校有一塊菱形空地/比〃ZA=60°,AB=4Qm,現(xiàn)安排在內(nèi)部修建一個(gè)四個(gè)頂點(diǎn)分別落在菱
形四條邊上的矩形魚(yú)池曲祖其余部分種花草,園林公司修建魚(yú)池,草坪的造價(jià)分別為■(元)、萬(wàn)(元)與修
建面積s(米2)之間的函數(shù)關(guān)系如圖2所示.
(1)若矩形魚(yú)池即然恰好為正方形,則/£=(60-20亞)卬.
(2)若矩形魚(yú)池跖陽(yáng)的面積是300T序,求廝的長(zhǎng)度;
(3)廝的長(zhǎng)度為多少時(shí),修建的魚(yú)池和草坪的總造價(jià)最低,最低造價(jià)為多少元(?取1.732,結(jié)果精確到元)
【分析】(1)依據(jù)題意設(shè)出)的長(zhǎng)度,然后依據(jù)題意即可求得相應(yīng)的的長(zhǎng);
(2)依據(jù)矩形魚(yú)池藥詡的面積是300T即可求得反的長(zhǎng)度;
(3)依據(jù)題意和函數(shù)圖象、菱形的面積計(jì)算公式即可解答本題.
【解答】解:(1)???四邊形/成力是菱形,//=60°,矩形魚(yú)池皮砌恰好為正方形,
;.AE=AF,
;.△力心是等邊三角形,
設(shè)廝的長(zhǎng)度為xm,則AE=xm,DE=(40-x)m,
由題意可得,Z2W=30°,AE=EH,
X
.\cos3007
40-x
解得,x=60-20?,
故答案為:(60-20?)m;
(2)設(shè)〃的長(zhǎng)度為MZZ,則/£=x〃,DE=(40-x)m,
由題意可得,N施7=30°,
:.EH=2DE*cos30°=2(40-x)X叵=如(較-x),
2
?..矩形魚(yú)池切物的面積是300辰,,
.,?rE(40-x)=300?,
解得,荀=10,乏=30,
即斯的長(zhǎng)度是10/或30例
(3)由圖2可知,
草坪每平方米造價(jià)為:48004-80=60元/平方米,
魚(yú)池每平方米造價(jià)為:48004-96=50元/平方米,
?四邊形/頗是菱形,/BAD=60°,A8=40m,
.?.初=40,^C=40V3>
二菱形/雙力的面積是:yX40X40^3=800^3,
設(shè)夕7的長(zhǎng)度為初?,貝!J/£=初,DE=(40-x)7
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 制造汽車合同范例
- 中秋禮盒銷售合同范本
- 中國(guó)抗感染類藥物行業(yè)市場(chǎng)發(fā)展監(jiān)測(cè)及投資方向研究報(bào)告
- 住宅供暖改造合同范本
- 出口紙張采購(gòu)合同范本
- 淺析單片機(jī)的應(yīng)用
- 勞務(wù)攬承合同范本
- 加工糾紛合同范本
- 公司簽訂私人合同范例
- 勞務(wù)及材料合同范本
- 《隋朝的統(tǒng)一與滅亡》 -完整版課件
- API-650-1鋼制焊接石油儲(chǔ)罐
- 職業(yè)危害告知書(shū)(最新版)
- 會(huì)計(jì)專業(yè)工作簡(jiǎn)歷表(中級(jí))
- 金融科技課件(完整版)
- 醫(yī)院壓力性損傷患者質(zhì)控標(biāo)準(zhǔn)
- 醫(yī)療機(jī)構(gòu)規(guī)章制度診所診所規(guī)章制度
- 幼兒園中班開(kāi)學(xué)第一課
- 飲品店操作流程圖
- 風(fēng)居住的街道鋼琴二胡合奏譜
- PADS元件封裝制作規(guī)范要點(diǎn)
評(píng)論
0/150
提交評(píng)論