平面直角坐標(biāo)系與函數(shù)(強化訓(xùn)練)原卷版_第1頁
平面直角坐標(biāo)系與函數(shù)(強化訓(xùn)練)原卷版_第2頁
平面直角坐標(biāo)系與函數(shù)(強化訓(xùn)練)原卷版_第3頁
平面直角坐標(biāo)系與函數(shù)(強化訓(xùn)練)原卷版_第4頁
平面直角坐標(biāo)系與函數(shù)(強化訓(xùn)練)原卷版_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題09平面直角坐標(biāo)系與函數(shù)(11個高頻考點)(強化訓(xùn)練)

【考點1有序數(shù)對】

1.(2022?河北保定?二模)嘉嘉和淇淇下棋,嘉嘉執(zhí)圓子,淇淇執(zhí)方子.棋盤中心方子的位置用(1,0)表

示,右下角方子的位置用(2,-1)表示.嘉嘉將第4枚圓子放入棋盤后,所有棋子構(gòu)成一個軸對稱圖

2.(2022?廣東?一模)閱讀理解:如圖1,在平面內(nèi)選一定點O,引一條有方向的射線。久,再選定一個單位

長度,那么平面上任一點加■的位置可由NM。%的度數(shù)8與。M的長度加確定,有序數(shù)對(仇zn)稱為M點的"極

坐標(biāo)”,這樣建立的坐標(biāo)系稱為"極坐標(biāo)系

應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長為4,有一邊。力在射線。久上,則正六邊形的頂點C的極

坐標(biāo)應(yīng)記為()

A.(60°,8)B.(45。,8)C.(60。,4際D.(45。,2兩

3.(2022?湖北宜昌?模擬預(yù)測)如果第二列第一行用有序數(shù)對(2,1)表示,那么數(shù)對(3,6)和(3,4)

表示的位置是()

A.同一行B.同一列C.同行同列D.不同行不同列

4.(2022?湖北黃岡?一模)小瑩和小博士下棋,小瑩執(zhí)圓子,小博士執(zhí)方子.如圖,棋盤中心方子的位置用

(―1,0)表示,右下角方子的位置用(0,—1)表示.小瑩將第4枚圓子放入棋盤后,所有棋子構(gòu)成一個軸對

稱圖形.她放的位置是.

5.(2022?江蘇揚州?一模)我們定義:平面內(nèi)兩條直線kU相交于點。Hi與I2不垂直),對于該平面內(nèi)任

意一點P,如果點P到直線1八%的距離分別為a、b,那么有序?qū)崝?shù)對(a,b)就叫做點P的"平面斜角坐

標(biāo)”.如果常數(shù)m、n都是正數(shù),那么在平面內(nèi)與“平面斜角坐標(biāo)"(m,n)對應(yīng)的點共有個.

【考點2點的坐標(biāo)】

6.(2022廣東廣州大學(xué)附屬中學(xué)二模)點P(m+2rm-1)在y軸上,則點尸的坐標(biāo)是.

7.(2022?江蘇?靖江外國語學(xué)校模擬預(yù)測)已知點4、B、。的坐標(biāo)分別4(1,5)、C(5,0),若點P在

乙4BC的平分線上,且P4=5,則點P的坐標(biāo)為.

8.(2022?四川達州?一模)若點P(2x,3久-1)到兩坐標(biāo)軸的距離之和為5,則x的值為.

9.(2022?河北?模擬預(yù)測)已知點P在第二象限,且到久軸的距離是3,至如軸的距離是2,則點P的坐標(biāo)為

10.(2022?浙江?模擬預(yù)測)在平面直角坐標(biāo)系xOy中,點P(a,6)的"變換點"0的坐標(biāo)定義如下當(dāng)時,Q

點坐標(biāo)為(4-a);當(dāng)a<b時,。點坐標(biāo)為(a,-6).

(1)(-2,3)的變換點坐標(biāo)是.

(2)若(a,-0.5a+2)的變換點坐標(biāo)是(犯n),則加的最大值是.

【考點3點所在的象限】

11.(2022?江蘇南通?一模)將點2(5,3)繞原點。順時針旋轉(zhuǎn)90。得到點4,則點4落在第象

限.

12.(2022?廣東廣州?模擬預(yù)測)若點P(*,y)的坐標(biāo)滿足方程組,則點尸不可能在第

象限.

13.(2022?山東濟南?一模)對于平面坐標(biāo)系中任意兩點力(%1)1)、8(%2必)定義一種新運算"*"為:*

(%2,、2)=根據(jù)這個規(guī)則,若在第三象限,在第四象限,貝!M*B在第

象限.

14.(2022?江蘇?儀征市古井中學(xué)一模)若點A(a,b-2)在第二象限,則點B(-a,b+1)在第象

限.

15.(2022?福建?龍海二中一模)若點/(2x7,5)和點3(4,尹3)關(guān)于點(-3,2)對稱,那么點/在

第象限.

【考點4點在坐標(biāo)系中的平移】

16.(2022?江蘇?射陽縣第四中學(xué)三模)在直角坐標(biāo)系中,點4(3,2)關(guān)于x軸的對稱點為公,將點&向左平移

3個單位得到點4,則①的坐標(biāo)為-

17.(2022?廣東?華南師大附中模擬預(yù)測)如圖,已知正方形4BCD,頂點力(1,3)、5(1,1)、C(3,1),規(guī)

定"把正方形4BCD先沿%軸翻折,再向左平移1個單位"為一次交換,如此這樣,連續(xù)經(jīng)過2016次變換后,正

方形力BCD的對角線交點M的坐標(biāo)變?yōu)?

18.(2022?湖北省直轄縣級單位?一模)如圖,點4B的坐標(biāo)分別為(1,2),(4,0),將三角形408沿x軸向右

平移,得到三角形CDE,已知DB=1,則點C的坐標(biāo)為.

19.(2022?河北?模擬預(yù)測)如圖,在正方形O42C中,。為坐標(biāo)原點,點C在y軸正半軸上,點/的坐標(biāo)

1

為(2,0),將正方形O/8C沿著方向平移整加個單位,則點C的對應(yīng)點坐標(biāo)為.

20.(2022?天津河西?中考模擬)如圖,將A48C向右平移5個單位長度,再向下平移2個單位長度,得到

⑴請畫出平移后的圖形△48£';

(2)并寫出△AB'C'各頂點的坐標(biāo);

⑶求出△4BC的面積.

【考點5坐標(biāo)與圖形】

21.(2022?北京市三帆中學(xué)模擬預(yù)測)在平面上任取一個△力BC,則可以定義面積坐標(biāo):對平面內(nèi)任一點

P,記Si=S4p4B,S2=SAPAC,S3=S4BC(若點P恰好在△斗鳥。的某條邊所在的直線上,則記相應(yīng)三角形

(1)如圖1,若點力的坐標(biāo)為(0,3).

①寫出點。(1,0)的面積坐標(biāo);

②已知幾個點的面積坐標(biāo)分別為:E{3,3,3},F{0,2,7},G{5,5,1},H12,2,5},則其中不在

△力BC內(nèi)部的點是;

(2)把平面內(nèi)一點的面積坐標(biāo)記為{根1,m2>m3}.

①如圖2,當(dāng)點4的坐標(biāo)為(-3,3)時,若機1=63,試探究y與x之間的關(guān)系;

②當(dāng)點4的坐標(biāo)為(0,3百)時,點M在以點7(3,t)為圓心,半徑為1的圓上運動,若點M的面積坐標(biāo)始終滿

足|加1+巾2一小31=9百,直接寫出t的取值范圍.

22.(2022?北京市第七中學(xué)一模)對于平面直角坐標(biāo)系KOy中的圖形M和點P,給出如下定義將圖形M繞點

P順時針旋轉(zhuǎn)90。得到圖形N,圖形N稱為圖形M關(guān)于點P的"垂直圖形”.例如,圖1中點。為點C關(guān)于點P的"垂

直圖形

>'A

5-

4-

3

2

1

-5-4-3-2-1。12345x

-1

-2

-3

-4

-5

圖1備用圖

⑴點A關(guān)于原點。的"垂直圖形"為點B.

①若點/的坐標(biāo)為(0,3),則點B的坐標(biāo)為;

②若點B的坐標(biāo)為(3,1),則點力的坐標(biāo)為;

(2)E(—3,3),F(—2,3),G(a,0),線段EF關(guān)于點G的"垂直圖形"記為E'F',點E的對應(yīng)點為E',點F的對應(yīng)點為

F'.

①求點E'的坐標(biāo)(用含a的式子表示);

②若。。的半徑為2,E'F'上任意一點都在。。內(nèi)部或圓上,直接寫出滿足條件的EE'的長度的最大值.

23.(2022?寧夏?銀川市第三中學(xué)模擬預(yù)測)閱讀下列一段文字,然后回答下列問題.已知在平面內(nèi)兩點乃

5,為)、P25,處),其兩點間的距離P*2=JOl—久2)2+(月一%)2,同時,當(dāng)兩點所在的直線在坐標(biāo)

軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可簡化為⑶-x/l或I竺-力I.

⑴已知/(2,4)、8(-3,-8),試求/、8兩點間的距離;

(2)已知/、3在平行于y軸的直線上,點/的縱坐標(biāo)為4,點2的縱坐標(biāo)為-1,試求/、3兩點間的距離;

⑶已知一個三角形各頂點坐標(biāo)為。(1,6)、£(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理

由.

24.(2022?江蘇南京?二模)藏寶地之謎.

從前,一個年輕人在他先祖的遺物中發(fā)現(xiàn)了一張記錄著藏寶地的羊皮紙,

上面寫著:

某荒島上有一株橡樹工和一株松樹瓦還有一座木樁P從木樁尸走到橡

樹,,記住所走的步數(shù),到了橡樹/向左拐個直角再走這么多步,在這里

打個樁,記為C從木樁尸再朝松樹2走去,記住所走的步數(shù),到了松樹2

向右拐個直角再走這么多步,在這里也打個樁,記為。.樁C,。的正當(dāng)

中就是寶藏的位置Q.

根據(jù)指示,這個年輕人找到了荒島上的橡樹和松樹,但可惜木樁已腐爛成

土,一點痕跡也看不出了.他只能亂挖起來,但是地方太大了,一切只是

徒勞,他只好抱憾而歸.

聰明的讀者,你有辦法找到寶藏嗎?

不妨任取一個位置作為尸,根據(jù)材料畫出下圖.

⑴以N8的中點為坐標(biāo)原點,以直線為x軸、以N8的垂直平分線為y軸建立平面直角坐標(biāo)系.不妨設(shè)

點B的坐標(biāo)為(10,0).

①若P的坐標(biāo)為(6,10),則Q的坐標(biāo)為;

②若P的坐標(biāo)為(一4,8),則。的坐標(biāo)為;

(2)猜想當(dāng)P在不同位置時,Q的位置是否隨之變化.

⑶寫出證明(2)中猜想的思路.

⑷將材料中兩處"再走這么多步"同時改為,可使(2)中的猜想仍然成立.

25.(2022?廣東中山?三模)在直角坐標(biāo)系中,把橫、縱坐標(biāo)都為整數(shù)的點稱為整點,頂點都是整點的三角

形稱為整點三角形.如圖,已知整點4(1,3),5(3,4),請在所給網(wǎng)格中按要求畫三角形.

⑴在圖1中畫出一個整點△OBP,使得點尸在第一象限,橫、縱坐標(biāo)之和等于5,且點/在aaBP的外

部.

⑵在圖2中畫出一個整點△OBQ,使得點。在第一象限,橫、縱坐標(biāo)的平方和等于17,且點/在△OBQ

的內(nèi)部.

【考點6點的坐標(biāo)規(guī)律探索】

26.(2022?河南南陽?三模)如圖,在平面直角坐標(biāo)系中,A(—1,1),B(-l,-2),C(3,—2),

0(3,1),一只瓢蟲從點/出發(fā)以2個單位長度/秒的速度沿力循環(huán)爬行,問第2022秒瓢蟲在

()處.

27.(2022?四川省渠縣中學(xué)一模)如圖,在平面直角坐標(biāo)系中,有若干個整數(shù)點:(1,0),(2,0),(2,

1),(3,2),(3,1),(3,0)...按圖中"好"所指方向排列,根據(jù)這個規(guī)律可得第2022個點的坐標(biāo)為()

A.(63,3)B.(63,4)C.(64,3)D.(64,5)

28.(2022?廣東?乳源瑤族自治縣教師發(fā)展中心三模)如圖,直線Z為丫=百居過點A(l,0)作lx軸,與

直線/交于點%,以原點。為圓心,OBi長為半徑畫弧交》軸于點4;再作軸,交直線?于點與,以原

點。為圓心,。&長為半徑畫弧交刀軸于點公;……按此作法進行下去,則點&坐標(biāo)為,點乙坐標(biāo)

29.QO22?寧夏?銀川北塔中學(xué)一模)如圖,在平面直角坐標(biāo)系中,從點PI(-1,0),P2(T,-D,P3(1,T),P4(1,1),

25(-2.1)/6(-2,—2),…依次擴展下去,貝加2022的坐標(biāo)為

八y

>

X

30.(2022?河北廊坊?一模)如圖,在平面直角坐標(biāo)系中,點A2,A3,....在x軸正半軸上,點%,B2>

B3,在直線丫=爭(久20)上.已知點4式1,0),且△力遭通2,^A2B2A3,△438344,…均為等邊三角

形.

(1)線段為&的長度為;

(2)點人2022的坐標(biāo)為;

(3)線段8202/2022的長度為---------

【考點7常量與變量】

31.(2022?云南昭通?二模)變量x,y的一些對應(yīng)值如下表所示:

X-3-2-1123

1111

1-1

y32~2-3

根據(jù)表格中的數(shù)據(jù)規(guī)律,當(dāng)x=6時,y的值為()A.—6B.6C.~D.,

32.(2022?山東濟南?模擬預(yù)測)下面的三個問題中都有兩個變量:

①正方形的周長y與邊長X;

②汽車以30千米/時的速度行駛,它的路程y與時間x;

③水箱以0.8L/min的流量往外放水,水箱中的剩余水量y與放水時間x.

其中,變量〉與變量x之間的函數(shù)關(guān)系可以利用如圖所示的圖象表示的是()

A.①②B.①③C.②③D.①②③

33.C022?河南?輝縣市太行中學(xué)模擬預(yù)測)科學(xué)研究表面,在彈簧的承受范圍內(nèi),彈簧掛上物體后會伸長.某

同學(xué)測得一彈簧的長度y(cm)與所掛物體的重量x(kg)之間的關(guān)系如下表所示:

X(kg)012345

y(cm)2020.52121.52222.5

下列說法不正確的是()A.x與y都是變量,且久是自變量,y是因變量

B.所掛物體的重量每增加1kg,彈簧的長度增加0.5cm

C.y與久的關(guān)系表達式是y=0.5x

D.所掛物體的重量為3.6kg時,彈簧的長度為21.8cm

34.(2022?廣東?深圳市龍崗區(qū)布吉賢義外國語學(xué)校模擬預(yù)測)我們知道"距離地面越高,氣溫就越低.”下

表表示的是某地某時氣溫;(℃)隨高度/z(km)變化而變化的情況:

距離地面高度(km)012345

溫度(℃)201482-4-10

⑴上表中自變量是,因變量是;

(2)請說明溫度是怎樣隨距離地面高度的增加而變化的;

⑶己知某山頂?shù)臍鉁貫?22。a求此山頂距離地面的高度.

35.(2022?陜西安康,模擬預(yù)測)一種水果的總售價y(元)與售出水果的質(zhì)量x(千克)之間的關(guān)系如下表

售出水果的質(zhì)量X(千克)00.511.522.53

總售價y(元)0369121518

(1)自變量是,每千克水果的售價是元.

(2)y與久的關(guān)系式為.

【考點8函數(shù)的概念】

36.(2022?湖南?長沙市華益中學(xué)一模)下列圖象中,表示y不是x的函數(shù)的是()

D.

37.(2022?廣西河池?中考模擬)下列關(guān)系式中,y不是自變量x的函數(shù)的是()

A.y=xB.y=x2C.y=|x|D.y2=x

38.(2022?廣東?佛山市南海區(qū)桂城街道桂江第一初級中學(xué)模擬預(yù)測)下列各選項中分別有兩個變量X、丹

則f不是x的函數(shù)的是()

C.y=—2x—1

D.在國內(nèi)投寄到外埠質(zhì)量為100g以內(nèi)的普通信函應(yīng)付郵資如下表:

信件質(zhì)量0<%20<%40<%60V%80<%

x/y<20<40<60<80<100

郵資y/元1.202.403.604.806.00

39.(2022?上海奉賢?三模)下列所述不屬于函數(shù)關(guān)系的是()

A.長方形的面積一定,它的長和寬的關(guān)系B.%+2與苫的關(guān)系

C.勻速運動的火車,時間與路程的關(guān)系D.某人的身高和體重的關(guān)系

40.(2022,安徽,合肥市五十中學(xué)東校三模)下列各圖像中,y不是x的函數(shù)有()

【考點9函數(shù)的解析式】

41.(2022?廣東?一模)已知兩個變量x和y,它們之間的3組對應(yīng)值如表所示,

X-101

321

則V與x之間的關(guān)系式可能是()

.3

A.y=xB.y=x2^x+lC.y=-x+2D.y=-

42.(2022?浙江溫州?一模)某汽車的油箱一次加滿汽油50升,可行駛y千米(假設(shè)汽油能行駛至油用完),

設(shè)該汽車行駛每100千米耗油x升,則y關(guān)于x的函數(shù)表達式為()

25000

A.y=2xB.y=-C.y=5000xD.y—

43.(2022?廣東?執(zhí)信中學(xué)三模)半徑為2的扇形,設(shè)其圓心角的度數(shù)為小面積S隨著"的變化而變化,則

面積S關(guān)于圓心角度數(shù)n的函數(shù)解析式為

44.(2022?內(nèi)蒙古?呼和浩特市啟秀中學(xué)二模)一個等腰三角形周長為36cm,它的腰長為xcm,底邊為ycm,

那么y關(guān)于x的函數(shù)關(guān)系式為,腰長龍的取值范圍為.

45.(2022?河北邯鄲?模擬預(yù)測)如圖,A,B,C,。是一條公路上連續(xù)的四個里程碑,已知每相鄰兩個里程

碑相距100米,甲從4開始以lm/s的速度勻速走向D,2分鐘后,乙從4開始以2zn/s的速度勻速走向D.設(shè)

甲行走的時間為ts,甲、乙二人走過的路程分別為SiO)、S2(m).

(1)請直接寫出S「S2與t之間的函數(shù)關(guān)系式;

(2)乙追上甲時的地點在哪兩個里程碑之間?請通過計算說明;

(3)甲、乙二人在行進過程中能否同時在B,C之間(不包含點B,C)?如果能,求出滿足這一條件的

時間段;如果不能,請說明理由.

BCD

【考點10自變量和函數(shù)值】

46.(2022?內(nèi)蒙古?科爾沁左翼中旗教研室二模)變量久,y的一些對應(yīng)值如下表:

X-2-10123

y-1-0.500.511.5

根據(jù)表格中的數(shù)據(jù)規(guī)律,當(dāng)x=-4時,y的值是()

A.2B.-2.5C.-1.5D.-2

47.(2022?四川,瀘州國家高新區(qū)初級中學(xué)校模擬預(yù)測)函數(shù)y=息的自變量x的取值范圍是

48.(2022?遼寧?丹東市第十七中學(xué)一模)函數(shù)丫=等+(%-3)°的自變量x的取值范圍是

49.(2022?上海閔行?二模)已知函數(shù)/(*)=咎,那么/(3)=.

50.(2022?甘肅天水?一模)小澤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù))/=,三的圖象與性質(zhì)進行了探究.下面是

小澤的探究過程,請補充完成:

iy

-1

⑴函數(shù)y=的自變量久的取值范圍是,函數(shù)值y的取值范圍是.

(2)下表為y與x的幾組對應(yīng)值:

X12345

y011.411.732

在所給的平面直角坐標(biāo)系中,描出以上表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;

(3)當(dāng)x=6時,對應(yīng)的函數(shù)值y約為;

⑷結(jié)合圖象寫

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論