



下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)安徽工業(yè)職業(yè)技術(shù)學(xué)院
《大數(shù)據(jù)采集與處理》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、隨著大數(shù)據(jù)技術(shù)的發(fā)展,數(shù)據(jù)存儲(chǔ)和管理面臨著新的挑戰(zhàn)。假設(shè)有一個(gè)不斷增長(zhǎng)的社交媒體數(shù)據(jù)倉(cāng)庫(kù),需要存儲(chǔ)數(shù)十億條用戶發(fā)布的帖子、評(píng)論和點(diǎn)贊等信息。以下哪種數(shù)據(jù)存儲(chǔ)技術(shù)最適合這種大規(guī)模、高并發(fā)的讀寫需求,并且能夠提供良好的擴(kuò)展性和性能?()A.傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù),如MySQLB.分布式文件系統(tǒng),如HDFSC.NoSQL數(shù)據(jù)庫(kù),如MongoDBD.內(nèi)存數(shù)據(jù)庫(kù),如Redis2、在大數(shù)據(jù)處理中,數(shù)據(jù)挖掘算法的選擇非常重要,以下關(guān)于數(shù)據(jù)挖掘算法選擇的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)挖掘算法的選擇需要根據(jù)數(shù)據(jù)的特點(diǎn)和應(yīng)用場(chǎng)景進(jìn)行B.不同的數(shù)據(jù)挖掘算法適用于不同類型的數(shù)據(jù)和問(wèn)題C.數(shù)據(jù)挖掘算法的選擇只需要考慮算法的準(zhǔn)確性,不需要考慮算法的效率和可擴(kuò)展性D.數(shù)據(jù)挖掘算法的選擇需要結(jié)合實(shí)際情況進(jìn)行評(píng)估和驗(yàn)證3、在大數(shù)據(jù)存儲(chǔ)架構(gòu)中,混合存儲(chǔ)模式逐漸受到關(guān)注。以下關(guān)于混合存儲(chǔ)的描述,哪一項(xiàng)是不正確的?()A.混合存儲(chǔ)結(jié)合了傳統(tǒng)磁盤存儲(chǔ)和新興的閃存存儲(chǔ)的優(yōu)勢(shì)B.它可以根據(jù)數(shù)據(jù)的訪問(wèn)頻率和重要性,將數(shù)據(jù)動(dòng)態(tài)地分配到不同的存儲(chǔ)介質(zhì)上C.混合存儲(chǔ)能夠提高存儲(chǔ)系統(tǒng)的性能和成本效益,但管理復(fù)雜度較低D.對(duì)于經(jīng)常訪問(wèn)的熱數(shù)據(jù),可以存儲(chǔ)在閃存中,以提高訪問(wèn)速度4、對(duì)于一個(gè)需要進(jìn)行實(shí)時(shí)數(shù)據(jù)分析和可視化的大數(shù)據(jù)應(yīng)用,以下哪種技術(shù)組合通常是最佳選擇?()A.Spark+Kafka+FlinkB.Hadoop+Hive+MySQLC.Spark+HBase+RedisD.Kafka+MongoDB+TensorFlow5、在大數(shù)據(jù)安全領(lǐng)域,訪問(wèn)控制是保護(hù)數(shù)據(jù)的重要手段。以下關(guān)于訪問(wèn)控制的描述,錯(cuò)誤的是?()A.訪問(wèn)控制可以防止未經(jīng)授權(quán)的用戶訪問(wèn)數(shù)據(jù)B.基于角色的訪問(wèn)控制是一種常見(jiàn)的訪問(wèn)控制策略C.訪問(wèn)控制只適用于數(shù)據(jù)庫(kù)中的數(shù)據(jù),對(duì)文件系統(tǒng)中的數(shù)據(jù)無(wú)效D.訪問(wèn)控制需要根據(jù)數(shù)據(jù)的敏感程度設(shè)置不同的權(quán)限級(jí)別6、在進(jìn)行大數(shù)據(jù)分析時(shí),經(jīng)常需要對(duì)數(shù)據(jù)進(jìn)行特征工程。以下關(guān)于特征工程的描述,錯(cuò)誤的是?()A.特征工程旨在從原始數(shù)據(jù)中提取有意義的特征B.特征工程可以提高數(shù)據(jù)分析模型的準(zhǔn)確性C.特征工程只適用于有監(jiān)督學(xué)習(xí)算法D.特征選擇和特征構(gòu)建是特征工程的重要步驟7、大數(shù)據(jù)在教育領(lǐng)域的應(yīng)用越來(lái)越廣泛。以下關(guān)于大數(shù)據(jù)在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析學(xué)生的學(xué)習(xí)行為和成績(jī)數(shù)據(jù)進(jìn)行個(gè)性化教學(xué)B.有助于學(xué)校優(yōu)化課程設(shè)置和教學(xué)資源分配C.大數(shù)據(jù)在教育中的應(yīng)用可能會(huì)侵犯學(xué)生的隱私D.由于教育數(shù)據(jù)的保密性要求高,大數(shù)據(jù)在教育中的應(yīng)用受到很大限制8、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)質(zhì)量的管理至關(guān)重要。以下關(guān)于數(shù)據(jù)質(zhì)量的影響因素和管理方法,哪項(xiàng)說(shuō)法不準(zhǔn)確?()A.數(shù)據(jù)質(zhì)量可能受到數(shù)據(jù)來(lái)源的多樣性、數(shù)據(jù)錄入的錯(cuò)誤、數(shù)據(jù)更新的不及時(shí)等因素的影響B(tài).為了提高數(shù)據(jù)質(zhì)量,可以采用數(shù)據(jù)清洗、數(shù)據(jù)驗(yàn)證、數(shù)據(jù)監(jiān)控等方法C.數(shù)據(jù)質(zhì)量的管理只需在數(shù)據(jù)收集階段進(jìn)行,后續(xù)處理過(guò)程中無(wú)需關(guān)注D.建立數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)體系有助于衡量和改進(jìn)數(shù)據(jù)質(zhì)量9、大數(shù)據(jù)在能源管理方面有諸多應(yīng)用。以下關(guān)于大數(shù)據(jù)在能源管理中的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析能源消耗數(shù)據(jù)優(yōu)化能源分配和調(diào)度B.有助于預(yù)測(cè)能源需求,提高能源供應(yīng)的穩(wěn)定性C.大數(shù)據(jù)在能源管理中的應(yīng)用主要集中在傳統(tǒng)能源領(lǐng)域,對(duì)新能源的作用有限D(zhuǎn).能夠監(jiān)測(cè)能源設(shè)備的運(yùn)行狀態(tài),提前發(fā)現(xiàn)故障隱患10、當(dāng)處理海量的社交媒體數(shù)據(jù)時(shí),情感分析是一個(gè)常見(jiàn)的任務(wù)。假設(shè)我們有大量的微博文本數(shù)據(jù),需要判斷每條微博所表達(dá)的情感是積極、消極還是中性。以下哪種方法常用于社交媒體的情感分析?()A.基于詞典的方法,根據(jù)預(yù)定義的情感詞庫(kù)進(jìn)行判斷B.基于機(jī)器學(xué)習(xí)的方法,使用分類算法進(jìn)行訓(xùn)練和預(yù)測(cè)C.基于深度學(xué)習(xí)的方法,如使用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行情感分類D.以上方法都經(jīng)常被使用,具體取決于數(shù)據(jù)特點(diǎn)和任務(wù)需求11、在大數(shù)據(jù)可視化中,為了展示數(shù)據(jù)的層次結(jié)構(gòu),以下哪種圖表類型較為合適?()A.樹形圖B.旭日?qǐng)DC.矩形樹圖D.以上都是12、在大數(shù)據(jù)存儲(chǔ)系統(tǒng)中,為了提高數(shù)據(jù)的訪問(wèn)速度,通常會(huì)使用緩存技術(shù)。以下關(guān)于緩存策略的描述,正確的是?()A.最近最少使用(LRU)策略總是最優(yōu)的B.先進(jìn)先出(FIFO)策略適用于數(shù)據(jù)訪問(wèn)模式穩(wěn)定的情況C.隨機(jī)替換策略在所有情況下性能最差D.緩存策略的選擇取決于數(shù)據(jù)的訪問(wèn)模式13、假設(shè)要對(duì)大數(shù)據(jù)進(jìn)行預(yù)測(cè)分析,例如預(yù)測(cè)股票價(jià)格走勢(shì),以下哪種機(jī)器學(xué)習(xí)算法可能會(huì)表現(xiàn)較好?()A.線性回歸B.決策樹C.支持向量機(jī)D.隨機(jī)森林14、在大數(shù)據(jù)處理框架中,Spark支持多種數(shù)據(jù)源的讀取和寫入。假設(shè)有一個(gè)需求是從關(guān)系型數(shù)據(jù)庫(kù)中讀取數(shù)據(jù),并在Spark中進(jìn)行處理。以下哪種方式是可行的?()A.使用JDBC連接數(shù)據(jù)庫(kù)讀取數(shù)據(jù)B.將數(shù)據(jù)庫(kù)中的數(shù)據(jù)導(dǎo)出為CSV文件,再由Spark讀取C.使用ODBC連接數(shù)據(jù)庫(kù)讀取數(shù)據(jù)D.Alloftheabove(以上皆是)15、在大數(shù)據(jù)的數(shù)據(jù)分析中,數(shù)據(jù)探索性分析(EDA)是重要的第一步。假設(shè)我們有一個(gè)新的數(shù)據(jù)集,以下哪個(gè)不是EDA的主要目的?()A.了解數(shù)據(jù)的分布和特征B.發(fā)現(xiàn)數(shù)據(jù)中的異常值C.直接建立數(shù)據(jù)的預(yù)測(cè)模型D.確定數(shù)據(jù)的質(zhì)量和缺失值情況16、在大數(shù)據(jù)處理框架中,Hadoop是一個(gè)廣泛使用的開源框架。以下關(guān)于Hadoop的描述,不正確的是()A.Hadoop由HDFS和MapReduce兩個(gè)核心組件構(gòu)成B.MapReduce編程模型適合處理大規(guī)模的離線數(shù)據(jù)C.Hadoop集群中的節(jié)點(diǎn)分為主節(jié)點(diǎn)和從節(jié)點(diǎn),主節(jié)點(diǎn)負(fù)責(zé)數(shù)據(jù)存儲(chǔ),從節(jié)點(diǎn)負(fù)責(zé)計(jì)算任務(wù)D.Hadoop具有良好的擴(kuò)展性,可以輕松應(yīng)對(duì)數(shù)據(jù)量的增長(zhǎng)17、在大數(shù)據(jù)分析中,常常需要對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè)。假設(shè)有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),以下哪種預(yù)測(cè)方法可能效果較好?()A.ARIMA模型B.決策樹C.樸素貝葉斯D.支持向量機(jī)18、當(dāng)處理來(lái)自多個(gè)不同數(shù)據(jù)源的異構(gòu)數(shù)據(jù)時(shí),為了實(shí)現(xiàn)數(shù)據(jù)的集成和統(tǒng)一管理,以下哪種方法通常是首選?()A.建立數(shù)據(jù)倉(cāng)庫(kù)B.使用ETL工具C.開發(fā)定制的數(shù)據(jù)接口D.直接將數(shù)據(jù)合并到一個(gè)數(shù)據(jù)庫(kù)中19、在大數(shù)據(jù)處理中,數(shù)據(jù)壓縮可以節(jié)省存儲(chǔ)空間和提高傳輸效率。以下哪種數(shù)據(jù)壓縮算法通常適用于文本數(shù)據(jù)?()A.LZ77B.RLEC.Huffman編碼D.以上都適用20、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)治理變得越來(lái)越重要。假設(shè)一個(gè)企業(yè)擁有多個(gè)業(yè)務(wù)系統(tǒng),數(shù)據(jù)分散在不同的數(shù)據(jù)庫(kù)和文件中,缺乏統(tǒng)一的管理和規(guī)范。以下哪項(xiàng)不是數(shù)據(jù)治理的主要目標(biāo)?()A.確保數(shù)據(jù)的準(zhǔn)確性和完整性B.提高數(shù)據(jù)的訪問(wèn)速度C.保障數(shù)據(jù)的安全性和合規(guī)性D.促進(jìn)數(shù)據(jù)的共享和流通二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋大數(shù)據(jù)如何改變新聞傳播方式。2、(本題5分)解釋大數(shù)據(jù)如何支持農(nóng)業(yè)災(zāi)害預(yù)警。3、(本題5分)簡(jiǎn)述大數(shù)據(jù)在人力資源招聘中的應(yīng)用。4、(本題5分)什么是數(shù)據(jù)清洗,為什么它在大數(shù)據(jù)處理中很重要?5、(本題5分)大數(shù)據(jù)對(duì)企業(yè)決策有哪些影響?三、綜合分析題(本大題共5個(gè)小題,共25分)1、(本題5分)對(duì)一家零售企業(yè)的節(jié)日促銷數(shù)據(jù)進(jìn)行分析,總結(jié)經(jīng)驗(yàn)教訓(xùn)。2、(本題5分)研究某在線旅游平臺(tái)的用戶行程規(guī)劃數(shù)據(jù),提供個(gè)性化旅游建議。3、(本題5分)根據(jù)某電商企業(yè)的商品庫(kù)存周轉(zhuǎn)率數(shù)據(jù),調(diào)整庫(kù)存策略。4、(本題5分)分析大數(shù)據(jù)在足療行業(yè)的應(yīng)用,如足療服務(wù)質(zhì)量評(píng)估、客戶健康數(shù)據(jù)監(jiān)測(cè),以及足療店的市場(chǎng)定位。5、(本題5分)根據(jù)某電商企業(yè)的售后服務(wù)成本數(shù)據(jù),提高服務(wù)效率,降低成本。四、編程題(本大題共3個(gè)小題,共30分)1、(本題10分)運(yùn)用Java語(yǔ)言和Solr搜索服務(wù)器,開發(fā)一個(gè)系
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 先過(guò)戶后貸款合同范例
- 債務(wù)轉(zhuǎn)賬合同范例
- 公路施工項(xiàng)目合同范例
- 公司網(wǎng)絡(luò)培訓(xùn)合同范例
- 供貨商合同范例
- 織物化纖改性處理的技術(shù)研究考試試題及答案
- 理解CAD工程師認(rèn)證考試中的社會(huì)責(zé)任與倫理要求試題及答案
- 質(zhì)量工程師資格2024年考試知識(shí)點(diǎn)明確與重點(diǎn)練習(xí)試題及答案
- 創(chuàng)新技法賦能2024年紡織機(jī)械操作證書考試的學(xué)習(xí)模式試題及答案
- 2024年審計(jì)師考試思維訓(xùn)練試題及答案
- 2021-2022學(xué)年浙江省“9 1”高中聯(lián)盟高一年級(jí)下冊(cè)學(xué)期期中數(shù)學(xué)試題【含答案】
- 硬筆書法:幼小銜接識(shí)字寫字教學(xué)課件
- 盤扣支模架工程監(jiān)理細(xì)則
- 崇尚科學(xué)反邪教主題教育PPT反對(duì)邪教主題教育宣講課件
- smt首件檢驗(yàn)記錄表
- 大眾Formel-Q培訓(xùn)材料全解析含案例
- 莫扎特貝多芬肖邦英文簡(jiǎn)介課件
- 青島中瑞泰豐新材料有限公司2萬(wàn)噸無(wú)機(jī)環(huán)保新材料來(lái)料加工項(xiàng)目 環(huán)境影響報(bào)告書
- 《現(xiàn)代漢語(yǔ)詞匯》PPT課件(教學(xué))
- 編碼理論第3章
- 北京市46家種豬場(chǎng)地址及聯(lián)系方式
評(píng)論
0/150
提交評(píng)論