深圳北理莫斯科大學(xué)《營(yíng)銷數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
深圳北理莫斯科大學(xué)《營(yíng)銷數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
深圳北理莫斯科大學(xué)《營(yíng)銷數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
深圳北理莫斯科大學(xué)《營(yíng)銷數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
深圳北理莫斯科大學(xué)《營(yíng)銷數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)深圳北理莫斯科大學(xué)

《營(yíng)銷數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析的風(fēng)險(xiǎn)評(píng)估中,假設(shè)要評(píng)估一個(gè)投資項(xiàng)目的風(fēng)險(xiǎn)水平。以下哪種方法可能更全面地考慮各種不確定性和潛在損失?()A.敏感性分析,研究參數(shù)變化的影響B(tài).蒙特卡羅模擬,隨機(jī)生成多種可能結(jié)果C.風(fēng)險(xiǎn)矩陣,評(píng)估風(fēng)險(xiǎn)的可能性和影響程度D.不進(jìn)行風(fēng)險(xiǎn)評(píng)估,盲目投資2、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)我們要檢驗(yàn)一種新的營(yíng)銷策略是否有效。以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不正確的?()A.零假設(shè)通常表示沒有差異或沒有效果B.通過計(jì)算檢驗(yàn)統(tǒng)計(jì)量和p值來(lái)決定是否拒絕零假設(shè)C.p值越小,說明拒絕零假設(shè)的證據(jù)越充分D.假設(shè)檢驗(yàn)的結(jié)果一定能夠準(zhǔn)確地反映實(shí)際情況,不存在誤差3、數(shù)據(jù)分析中的決策樹算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們構(gòu)建了一個(gè)決策樹來(lái)預(yù)測(cè)客戶是否會(huì)購(gòu)買某產(chǎn)品,以下哪個(gè)因素可能影響決策樹的復(fù)雜度和準(zhǔn)確性?()A.特征選擇B.分裂準(zhǔn)則C.剪枝策略D.以上都是4、數(shù)據(jù)倉(cāng)庫(kù)是數(shù)據(jù)分析的重要基礎(chǔ)設(shè)施。假設(shè)一個(gè)企業(yè)要構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)來(lái)整合來(lái)自不同業(yè)務(wù)系統(tǒng)的數(shù)據(jù),以下哪個(gè)步驟是首先要進(jìn)行的?()A.確定數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)B.進(jìn)行數(shù)據(jù)清洗和轉(zhuǎn)換C.定義數(shù)據(jù)模型D.選擇合適的數(shù)據(jù)庫(kù)管理系統(tǒng)5、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)用于存儲(chǔ)和管理大量的數(shù)據(jù)。假設(shè)一個(gè)企業(yè)要建立數(shù)據(jù)倉(cāng)庫(kù)。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)通常是經(jīng)過整合和清洗的,質(zhì)量較高B.數(shù)據(jù)倉(cāng)庫(kù)支持復(fù)雜的查詢和分析操作,能夠快速返回結(jié)果C.數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)更新頻率較低,一般是定期批量更新D.數(shù)據(jù)倉(cāng)庫(kù)可以直接替代業(yè)務(wù)系統(tǒng)中的數(shù)據(jù)庫(kù),用于日常的事務(wù)處理6、進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行分類。以下關(guān)于分類算法的描述,錯(cuò)誤的是:()A.決策樹算法易于理解和解釋B.支持向量機(jī)在處理高維數(shù)據(jù)時(shí)表現(xiàn)出色C.K近鄰算法對(duì)異常值不敏感D.樸素貝葉斯算法假設(shè)各個(gè)特征之間相互獨(dú)立7、在構(gòu)建數(shù)據(jù)分析模型時(shí),特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因?yàn)樗y以量化C.直接使用原始數(shù)據(jù),不進(jìn)行任何處理D.將所有特征組合成一個(gè)綜合特征8、在處理數(shù)據(jù)時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行歸一化,使其值在0到1之間,以下哪個(gè)公式可以實(shí)現(xiàn)?()A.x-min(x)/(max(x)-min(x))B.(x-μ)/σC.x/sum(x)D.以上都不是9、在數(shù)據(jù)分析的深度學(xué)習(xí)模型中,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的描述,不準(zhǔn)確的是()A.CNN適用于處理圖像和音頻等具有空間結(jié)構(gòu)的數(shù)據(jù)B.CNN通過卷積層和池化層自動(dòng)提取特征C.CNN的訓(xùn)練需要大量的數(shù)據(jù)和較高的計(jì)算資源D.CNN不能用于文本數(shù)據(jù)的處理10、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的設(shè)計(jì)和實(shí)現(xiàn)需要考慮多個(gè)因素,其中數(shù)據(jù)粒度是一個(gè)重要的因素。以下關(guān)于數(shù)據(jù)粒度的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)粒度是指數(shù)據(jù)的詳細(xì)程度和匯總程度B.數(shù)據(jù)粒度越細(xì),數(shù)據(jù)的存儲(chǔ)和管理成本越高C.數(shù)據(jù)粒度越粗,數(shù)據(jù)的查詢和分析效率越高D.數(shù)據(jù)粒度的選擇只取決于數(shù)據(jù)的類型和規(guī)模,與數(shù)據(jù)分析的需求無(wú)關(guān)11、假設(shè)要分析一個(gè)醫(yī)療保健系統(tǒng)中的患者病歷數(shù)據(jù),包括診斷結(jié)果、治療方案、康復(fù)情況等,以發(fā)現(xiàn)疾病的趨勢(shì)和治療效果的影響因素。考慮到醫(yī)療數(shù)據(jù)的敏感性和隱私性,以下哪個(gè)方面需要特別注意?()A.數(shù)據(jù)加密和安全保護(hù)B.快速得出分析結(jié)果C.忽略數(shù)據(jù)的隱私問題D.公開所有數(shù)據(jù)以獲取更多幫助12、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠準(zhǔn)確地描述數(shù)據(jù)特征。假設(shè)我們正在分析一組學(xué)生的考試成績(jī)。以下關(guān)于統(tǒng)計(jì)指標(biāo)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.平均數(shù)能夠反映數(shù)據(jù)的集中趨勢(shì),但容易受到極端值的影響B(tài).中位數(shù)不受極端值的影響,能更穩(wěn)健地表示數(shù)據(jù)的中心位置C.標(biāo)準(zhǔn)差越大,說明數(shù)據(jù)的離散程度越小,數(shù)據(jù)越穩(wěn)定D.方差是標(biāo)準(zhǔn)差的平方,同樣可以反映數(shù)據(jù)的離散程度13、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過程。假設(shè)你在一個(gè)電商網(wǎng)站的交易數(shù)據(jù)中進(jìn)行數(shù)據(jù)挖掘,旨在發(fā)現(xiàn)客戶的購(gòu)買行為模式。以下關(guān)于數(shù)據(jù)挖掘技術(shù)的選擇,哪一項(xiàng)是最有可能有效的?()A.使用關(guān)聯(lián)規(guī)則挖掘,找出經(jīng)常一起購(gòu)買的商品組合B.應(yīng)用決策樹算法進(jìn)行分類,預(yù)測(cè)客戶是否會(huì)購(gòu)買某類商品C.利用聚類分析將客戶分為不同的群體,基于群體特征進(jìn)行營(yíng)銷D.以上三種技術(shù)結(jié)合使用,全面挖掘數(shù)據(jù)中的潛在信息14、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的原則有很多,其中簡(jiǎn)潔明了是一個(gè)重要的原則。以下關(guān)于簡(jiǎn)潔明了的描述中,錯(cuò)誤的是?()A.簡(jiǎn)潔明了的可視化圖表可以讓讀者更容易理解數(shù)據(jù)的含義B.簡(jiǎn)潔明了的可視化圖表應(yīng)該避免使用過多的顏色和裝飾C.簡(jiǎn)潔明了的可視化圖表可以通過減少數(shù)據(jù)的維度和細(xì)節(jié)來(lái)實(shí)現(xiàn)D.簡(jiǎn)潔明了的可視化圖表只適用于簡(jiǎn)單的數(shù)據(jù)展示,對(duì)于復(fù)雜的數(shù)據(jù)無(wú)法處理15、假設(shè)要分析一個(gè)電商平臺(tái)的用戶評(píng)論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語(yǔ)言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識(shí)別D.以上都是16、某數(shù)據(jù)分析項(xiàng)目需要對(duì)大量文本數(shù)據(jù)進(jìn)行情感分析。以下哪種技術(shù)常用于文本情感分析?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.詞袋模型17、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問題。假設(shè)要分析信用卡欺詐檢測(cè)數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問題時(shí)更能提高模型對(duì)少數(shù)類(欺詐交易)的識(shí)別能力?()A.過采樣B.欠采樣C.合成少數(shù)類過采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用18、在數(shù)據(jù)分析的過程中,數(shù)據(jù)的預(yù)處理和特征工程可能會(huì)占用大量時(shí)間。假設(shè)你面臨時(shí)間緊迫的情況,以下關(guān)于時(shí)間分配的策略,哪一項(xiàng)是最明智的?()A.跳過預(yù)處理和特征工程,直接進(jìn)行建模分析B.減少數(shù)據(jù)清洗的工作,重點(diǎn)放在特征工程上C.合理分配時(shí)間,確保預(yù)處理和特征工程的質(zhì)量,以提高模型性能D.把大部分時(shí)間花在模型選擇和調(diào)優(yōu)上,忽略數(shù)據(jù)準(zhǔn)備19、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的配色方案選擇也很重要。假設(shè)要?jiǎng)?chuàng)建一個(gè)展示銷售數(shù)據(jù)的圖表,以下關(guān)于配色方案選擇的描述,正確的是:()A.隨意選擇喜歡的顏色,不考慮顏色的對(duì)比度和可讀性B.使用過于鮮艷和刺眼的顏色組合,以吸引注意力C.遵循色彩理論和設(shè)計(jì)原則,選擇對(duì)比度高、易于區(qū)分和視覺舒適的配色方案,使數(shù)據(jù)清晰可讀,并根據(jù)數(shù)據(jù)的性質(zhì)和重要性進(jìn)行顏色映射D.不考慮色盲和色弱人群的觀看體驗(yàn),只追求美觀20、在數(shù)據(jù)挖掘中,若要對(duì)文本數(shù)據(jù)進(jìn)行分類,以下哪種算法可能會(huì)被使用?()A.NaiveBayes算法B.C4.5算法C.K-Means算法D.以上都有可能二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋什么是量子計(jì)算在數(shù)據(jù)分析中的潛在應(yīng)用,說明其優(yōu)勢(shì)和面臨的挑戰(zhàn),并舉例分析。2、(本題5分)在處理文本數(shù)據(jù)時(shí),常用的技術(shù)和方法有哪些?解釋詞袋模型、TF-IDF等概念,并說明如何將文本數(shù)據(jù)轉(zhuǎn)化為可分析的數(shù)值形式。3、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的異常模式挖掘,包括離群點(diǎn)檢測(cè)、模式發(fā)現(xiàn)等方法和應(yīng)用。4、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的價(jià)值評(píng)估,包括直接價(jià)值、潛在價(jià)值和風(fēng)險(xiǎn)價(jià)值等方面的評(píng)估方法。5、(本題5分)說明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的特征縮放和標(biāo)準(zhǔn)化,解釋其重要性和常見的方法,并舉例說明在不同算法中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某運(yùn)動(dòng)品牌公司收集了不同地區(qū)門店的銷售數(shù)據(jù)、消費(fèi)者特征、市場(chǎng)競(jìng)爭(zhēng)情況。分析各地區(qū)市場(chǎng)的潛力和競(jìng)爭(zhēng)態(tài)勢(shì),制定區(qū)域化的營(yíng)銷和產(chǎn)品策略。2、(本題5分)某網(wǎng)約車平臺(tái)收集了司機(jī)和乘客的行程數(shù)據(jù)、評(píng)價(jià)數(shù)據(jù)、投訴數(shù)據(jù)等。思考如何通過這些數(shù)據(jù)提升平臺(tái)的服務(wù)質(zhì)量和安全性。3、(本題5分)某在線攝影服務(wù)平臺(tái)積累了用戶需求數(shù)據(jù)、攝影師作品風(fēng)格、訂單完成情況等。提高攝影師與用戶的匹配度,提升服務(wù)質(zhì)量。4、(本題5分)某在線教育平臺(tái)記錄了不同地區(qū)學(xué)生的學(xué)習(xí)數(shù)據(jù),包括課程選擇、學(xué)習(xí)進(jìn)度、考試成績(jī)等。分析如何依據(jù)這些數(shù)據(jù)制定區(qū)域化的教育資源分配策略。5、(本題5分)一家連鎖書店的文學(xué)作品區(qū)域記錄了銷售數(shù)據(jù),包括作品體裁、作者國(guó)籍、銷量、價(jià)格、讀者年齡等。研究不同體裁和作者國(guó)籍的文學(xué)作品在不同年齡讀者中的銷售情況。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)在金融風(fēng)險(xiǎn)管理中,論述如何運(yùn)用時(shí)間序列分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論