




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
????
DiscreteMathematics
8/30Ch19/1Ch1Hw1Ch1,26Ch28Ch215Ch320Ch3Hw2Ch3,422Ch4Quiz1Ch1,227Ch429Ch510/4Ch5Hw3Ch5,66Ch611Ch6Quiz2Ch3,413Ch718Ch7Hw4Ch7,820WedExam1Ch1~625Ch827Ch811/1Ch93Ch9Hw5Ch9,108Ch10Quiz3Ch7,810Ch1015Ch1117Ch11Hw6Ch11,1222WedExam2Ch7~1024Ch1229Ch1212/16-Quiz4Ch11,128-FinalAllchaptersDiscreteMathematics
7thedition,2009Chapter1SetsandlogicChapter2Proofs51.1SetsSet=acollectionofdistinctunorderedobjectsMembersofasetarecalledelementsHowtodetermineasetListing:Example:A={1,3,5,7}DescriptionExample:B={x|x=2k+1,0<
k
<3}6FiniteandinfinitesetsFinitesetsExamples:A={1,2,3,4}B={x|xisaninteger,1<
x
<4}InfinitesetsExamples:Z={integers}={…,-3,-2,-1,0,1,2,3,…}S={x|xisarealnumberand1<
x<4}=[1,4]7SomeimportantsetsTheemptysethasnoelements.Alsocallednullsetorvoidset.Universalset:thesetofallelementsaboutwhichwemakeassertions.Examples:U={allnaturalnumbers}U={allrealnumbers}U={x|xisanaturalnumberand1<
x<10}8CardinalityCardinalityofasetA(insymbols|A|)isthenumberofelementsinAExamples:IfA={1,2,3}then|A|=3IfB={x|xisanaturalnumberand1<
x<9}then|B|=9InfinitecardinalityCountable(e.g.,naturalnumbers,integers)Uncountable(e.g.,realnumbers)9Subsets,PowersetXisasubset
ofYifeveryelementofXisalsocontainedinY
(insymbolsX
Y)Equality:X=YifX
YandY
XXisapropersubsetofYifX
YbutY
XObservation:isasubsetofeverysetThepowersetofXisthesetofallsubsetsofX,insymbols
P(X),i.e.
P(X)={A|A
X}Example:ifX={1,2,3}, then
P(X)={,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}Theorem2.1.4:If|X|=n,then|P(X)|=2n.10Setoperations
GiventwosetsXandYTheunionofXandYisdefinedastheset
X
Y={x|x
Xorx
Y}TheintersectionofXandYisdefinedastheset
X
Y={x|x
Xandx
Y}
TwosetsXandYaredisjointifXY=Thedifferenceoftwosets
X–Y={x|x
Xandx
Y}
ThedifferenceisalsocalledtherelativecomplementofYinXSymmetricdifference
X
Δ
Y=(X–Y)(Y–X)Thecomplement
ofasetAcontainedinauniversalsetUisthesetAc=U–A
11VenndiagramsAVenndiagramprovidesagraphicviewofsetsSetunion,intersection,difference,symmetricdifferenceandcomplementscanbeidentifiedUAB12PropertiesofsetoperationsTheorem2.1.10: LetUbeauniversalset,andA,BandCsubsetsofU. Thefollowingpropertieshold:a)Associativity: (A
B)C=A(B
C) (A
B)C=A(B
C)b)Commutativity: A
B=B
A
A
B=B
Ac)Distributivelaws: A(B
C)=(A
B)(A
C)
A(B
C)=(A
B)(A
C)d)
Identitylaws: A
U=A
A=Ae)Complementlaws: A
Ac=U
A
Ac=13Propertiesofsetoperationsf)Idempotentlaws:A
A=A
A
A=Ag)Boundlaws: A
U=U
A=h)Absorptionlaws: A(A
B)=A
A(A
B)=Ai)Involutionlaw: (Ac)c=Aj)0/1laws: c=U
Uc=k)DeMorgan’slawsforsets: (A
B)c=Ac
Bc (A
B)c=Ac
Bc141.2PropositionsLogic=thestudyofcorrectreasoningStatementsasasingledatumhaving(binary)truthvalueRepresenting“facts”digitallyQ:whataboutstatementsthathavedegreeoftruthvalue?Howcanwemanipulatethemtoderivenewthings?UseoflogicInmathematics:toprovetheoremsIncomputerscience:toprovethatprogramsdowhattheyaresupposedtodoAI/DB:TheoremproverSoftwareengineering:Programcorrectness15PropositionsApropositionisastatementorsentencethatcanbedeterminedtobeeithertrueorfalse.
Examples:“Johnisaprogrammer"isaproposition“IwishIwerewise”isnotaproposition(?)Well,youcanstillassignsomevalue…Computersdon’treallycare…16ConnectivesIfpandqarepropositions,newcompoundpropositionscanbeformedbyusingconnectives
Mostcommonconnectives:ConjunctionAND. Symbol^
InclusivedisjunctionOR SymbolvExclusivedisjunctionOR SymbolvNegation Symbol~Implication Symbol
Doubleimplication Symbol
17TruthtableTruthtableofconjunction^,and,???pqp^qTTTTFFFTFFFFpqpvqTTTTFTFTTFFFTruthtableof(inclusive)disjunctionv,or,???Truthtableofexclusivedisjunction“Eitherporq”(butnotboth),
,exclusiveorpqp
v
qTTFTFTFTTFFFTruthtableofNegation
~,not,??p~pTFFT18MorecompoundstatementsLetp,q,rbesimplestatements
Wecanformothercompoundstatements,suchas(p
q)^rp(q^r)(~p)(~q)(p
q)^(~r)andmanyothers…
Exampletruthtableof(p
q)^rpqr(p
q)^
rTTTTTTFFTFTTTFFFFTTTFTFFFFTFFFFF191.3Conditionalpropositions(????)and
logicalequivalence(??)Aconditionalproposition“Ifpthenq”,"ponlyifq"Insymbols:p
qTruthtablep:antecedentorhypothesis(??)sufficientcondition(????)forq
q:consequentorconclusion(??)necessarycondition(????)forppqp
qTTTTFFFTTFFT20Logicalequivalencelogicallyequivalent
??two
truthtablesareidentical.converse?converseofpqisqpp
q~p
q
p
qTTTTTFFFFTTTFFTTp
qp
pTTTTTFFTFTTFFFTTcontrapositive
??contrapositiveofthepqis~q~p.logicallyequivalentpqp
q~q~pTTTTTFFFFTTTFFTT21Logicalequivalencedoubleimplication
???pifandonlyifqp
qlogicallyequivalentto(p
q)^(q
p)tautology
????truthtablecontainsonlytruevaluesforeverycasecontradiction
????truthtablecontainsonlyfalsevaluesforeverycasepqp
q(p
q)^(q
p)TTTTTFFFFTFFFFTTpqp
pvq
TTTTFTFTTFFTpp^(~p)TFFF22DeMorgan’slawsforlogicThefollowingpairsofpropositionsarelogicallyequivalent:~(p
q)and(~p)^(~q)~(p
^q)and(~p)(~q)231.4ArgumentsandrulesofinferenceDeductivereasoning:theprocessofreachingaconclusionqfromasequenceofpropositionsp1,p2,…,pn.Thepropositionsp1,p2,…,pn
arecalled
premises(??)orhypothesis
(??).Thepropositionqthatislogicallyobtainedthroughtheprocessiscalledtheconclusion.24Rulesofinference1.Lawof
detachmentormodus
ponens(modethataffirms)p
qpTherefore,q2.Modus
tollens
(modethatdenies)p
q~qTherefore,~p3.Ruleof
AdditionpTherefore,p
q4.Ruleof
simplificationp^qTherefore,p5.RuleofconjunctionpqTherefore,p^q6.Ruleofhypotheticalsyllogismp
rTherefore,p
r
7.Ruleofdisjunctivesyllogismp
q~pTherefore,q25Rulesofinferenceforquantifiedstatements1.Universalinstantiation
x
D,P(x)d
DThereforeP(d)2.UniversalgeneralizationP(d)foranyd
DThereforex,P(x)3.Existentialinstantiation
x
D,P(x)ThereforeP(d)forsomed
D4.ExistentialgeneralizationP(d)forsomed
DThereforex,P(x)261.5Quantifiers(????)Apropositionalfunction
P(x)isastatementinvolvingavariablexForexample:P(x):2xisaneveninteger
DomainofapropositionalfunctionifxisanelementofasetD,DiscalledthedomainofP(x)Forexample,xisanelementofthesetofintegersthedomainDofP(x)mustbedefined(cf.)P(x):xisanevenintegerifDisasetofevenintegersifDisasetofoddintegers27Universalquantifieruniversalquantifierforevery…
x
P(x):P(x)forevery
xinadomainDTrueifP(x)istrueforevery
x
DFalseifP(x)isnottrueforsome
x
DExample:LetP(n)bethepropositionalfunctionn2+2nisanoddinteger
n
D={allintegers}P(n)istrueonlywhennisanoddinteger,falseifnisaneveninteger.28Existentialquantifier,Counterexampleexistentialquantifierforsome…
x
P(x):P(x)forsomexinadomainDtrueifthereexistsanelementxinthedomainDforwhichP(x)istrue.counterexample
x
P(x)isfalseifx
DsuchthatP(x)isfalse.ThevaluexthatmakesP(x)falseiscalledacounterexampletothestatement
x
P(x).ExampleP(x)="everyxisaprimenumber",foreveryintegerx.
Butifx=4(aninteger)thisxisnotaprimernumber.Then4isacounterexampletoP(x)beingtrue.29GeneralizedDeMorgan’slawsforLogic
IfP(x)isapropositionalfunction,theneachpairofpropositionsina)andb)belowhavethesametruthvalues:
a)~(
x
P(x))andx:~P(x)
"Itisnottruethatforeveryx,P(x)holds"isequivalentto"ThereexistsanxforwhichP(x)isnottrue“
b)~(x
P(x))andx:~P(x)
"ItisnottruethatthereexistsanxforwhichP(x)istrue"isequivalentto"Forallx,P(x)isnottrue"301.6NestedQuantifiersNestedquantifier:multiplequantifierExample
x
y
P(x,y)ForeveryxinD,thereisyinDsuchthatP(x,y)istrue
x
y(x<y)Foreveryx,thereexistysuchthatx<y.D:integer
x
y
L(x,y)L(x,y):xlovesyEverybody(x)lovessomebody(y)E.g.False:thereissomeonewholovesnobody
x
y
P(x,y)ForeveryxinDandforeveryyinD,P(x,y)istrue.
x
y((x>0)^(y>0))(x+y>0)),D:realnumberIfthereisatleastonexandatleastysuchthatP(x,y)isfalseLikeinx
y((x>0)^(y<0))(x+y0)),D:realnumberCounterexample:x=1,y=-131NestedQuantifierExample
x
y
P(x,y)ThereisatleastonxsuchthatP(x,y)istrueforeveryyinD
x
y(x
y),D:positiveintegerx=1
x
y(x
y),D:positiveintegerFalse:foreveryx,thereisatleastonepositiveintegery(ex.y=x+1)
x
y
P(x,y)ThereisatleastonexinDandatleastoneyinDsuchthatP(x,y)istrue.
x
y((x>1)^(y>1)^(xy=6))
x
y((x>1)^(y>1)^(xy=7))32
x
y
P(x,y)
x
y
P(x,y)
x
y
P(x,y)
x
y
P(x,y)NestedQuantifierX={a,b,c},Y={1,2,3,4}abc1234P(x,y)XYabc1234P(x,y)XYabc1234P(`,y)XYabc1234P(x,y)XYabc1234P(x,y)XYabc1234P(x,y)XYabc1234P(x,y)XY332.1Mathematicalsystems,directproofsandcounterexamplesAmathematicalsystemconsistsofUndefinedtermsDefinitionsAxioms34Undefinedterms,DefinitionsUndefinedtermsarethebasicbuildingblocksofamathematicalsystem.Thesearewordsthatareacceptedasstartingconceptsofamathematicalsystem.Example:inEuclideangeometrywehaveundefinedtermssuchasPointLine
Adefinition(??)isapropositionconstructedfromundefinedtermsandpreviouslyacceptedconceptsinordertocreateanewconcept.Example:InEuclideangeometrythefollowingaredefinitions:Twotrianglesarecongruentiftheirverticescanbepairedsothatthecorrespondingsidesareequalandsoarethecorrespondingangles.Twoanglesaresupplementaryifthesumoftheirmeasuresis180degrees.35Axioms,TheoremsAnaxiom(??)isapropositionacceptedastruewithoutproofwithinthemathematicalsystem.Therearemanyexamplesofaxiomsinmathematics:Example:InEuclideangeometrythefollowingareaxiomsGiventwodistinctpoints,thereisexactlyonelinethatcontainsthem.Givenalineandapointnotontheline,thereisexactlyonelinethroughthepointwhichisparalleltotheline.Atheorem(??)
isapropositionoftheformp
qwhichmustbeshowntobetruebyasequenceoflogicalstepsthatassumethatpistrue,andusedefinitions,axiomsandpreviouslyproventheorems.36LemmasandcorollariesAlemma(????)isasmalltheoremwhichisusedtoproveabiggertheorem.Acorollary(????)isatheoremthatcanbeproventobealogicalconsequenceofanothertheorem.ExamplefromEuclideangeometry:"Ifthethreesidesofatrianglehaveequallength,thenitsanglesalsohaveequalmeasure."37TypesofproofAproofisalogicalargumentthatconsistsofaseriesofstepsusingpropositionsinsuchawaythatthetruthofthetheoremisestablished.Directproof:p
qAdirectmethodofattackthatassumesthetruthofpropositionp,axiomsandproventheoremssothatthetruthofpropositionqisobtained.38Directproof:exampleIfniseven,thenn2
iseven.Supposeniseven.
Thenbydefinitionof“even”thereisanintegermforwhichn=2m.
Ifwesquarebothsides,wegetn2=4m2=2*2m2.2m2
isanintegerbecausemisaninteger,sobydefinitionof“even”,niseven.392.2MoremethodsofproofProofbycontradictionProofbycontrapositiveProofbycasesProofsofequivalenceExistenceproofs
40IndirectproofThemethodofproofbycontradiction(a.k.a.indirectproof)ofatheoremp
qconsistsofthefollowingsteps:Assumepistruebutqisfalse~(p
q)
p
~q2.Usingp,~q,axioms,previouslyderivedtheoremsandrulesofinference,deriver^(~r),acontradictionInparticular,rcouldbep3.Concludeqcannotbefalse,hencep
q
TheonlydifferenceisthenegatedconclusioninourassumptionsUsewhendirectproofisdifficult
41Specialcase:proofbycontrapositiveIfr=pintheproofbycontradiction,itiscalledtheproofbycontrapositiveSinceineffectwehaveshown(~q)(~p),whichislogicallyequivalenttop
qExample:ShowforeverynZ,ifn2iseven,thenniseven.Supposen2iseven,butnisodd.Thenthereexistsanintegerks.t.n=2k+1.Ifwesquarebothsidesweobtainn2=4k2+4k+1=2(2k2+2k)+1.Buttheequationtellsusn2isodd,acontradiction.WehaveprovedthatforeverynZ,ifn2iseven,thenniseven.Proofbycontradiction:exampleProve2isirrational.Suppose2isrational.Thenthereexistintegerspandqsuchthat2=p/q.Assumethefractionp/qisinlowesttermssothatpandqarenotbotheven.Squaringbothsidesgives2=p2/q2
Multiplyingbyq2gives2q2=p2.Itmeansp2
iseven,thenpiseven(!).Therefore,thereexistsanintegerks.t.p=2k.Substitutinginto2q2=p2givesq2=2k2.Therefore,qiseven.Thusbothpandqarebotheven,contradictingourassumption.Therefore,2isirrational.42OthersProofbycasesProve(p1
p2
p3
…
pn)
qInsteadprove(p1
q)…(pn
q)AlsocalledexhaustiveproofUsewhenthenumberofcasestoproveissmallProofofequivalenceProvep
qProvep
qandq
pExistenceproofProve
xP(x)Justfindonexthatsatisfiesaboveandthatisit…Sometimesitisnotsoeasytofindthatx…442.3ResolutionproofsDuetoJ.A.Robinson(1965)Aclauseisacompoundstatementwithtermsseparatedby“or”,andeachtermisasinglevariableorthenegationofasinglevariableExample:p
q(~r)isaclause(p
q)
r(~s)isnotaclause
HypothesesandconclusionarewrittenasclausesIfahypothesisisnotaclause,itmustbereplacedbyanequivalentexpressionthatiseitheraclauseortheandofclausesOnlyonerule:If(p
q)and(~p
r)arebothtrue
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產(chǎn)估價委托協(xié)議書(6篇)
- 國際深度合作協(xié)議
- 店鋪和信用卡合作協(xié)議
- 勞務清單合同范本
- 設備及服務合同范本
- 合同范例合同范文
- 業(yè)務居間合同范本
- 賣方做合同范例
- 協(xié)議價合同范本
- 賣木頭合同范本
- 《綠色建筑設計原理》課件
- 2025年全國高考體育單招政治時事填空練習50題(含答案)
- 城市社會學課件
- GB/T 9788-1988熱軋不等邊角鋼尺寸、外形、重量及允許偏差
- 輪轂電機驅(qū)動電動車懸架和轉(zhuǎn)向系統(tǒng)設計與性能匹配
- 二年級第二學期體育知識結(jié)構(gòu)圖
- CASS勘測定界操作指導方案
- 中國商品條碼系統(tǒng)注冊登記表規(guī)范填寫
- 湘科教版小學信息技術(shù)四年級下冊全冊教案.doc
- JJG 840-1993 函數(shù)信號發(fā)生器檢定規(guī)程
- 胃瘍(慢性消化性潰瘍)中醫(yī)護理方案
評論
0/150
提交評論