




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年貴州省遵義航天高中高三綜合模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在中,,是上的一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.2.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.64.若集合,則=()A. B. C. D.5.若函數(shù)為自然對(duì)數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.57.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.8.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.9.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)的莖葉圖如圖所示.①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績(jī)的方差小于乙同學(xué)成績(jī)的方差.以上說(shuō)法正確的是()A.③④ B.①② C.②④ D.①③④10.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.函數(shù)滿足對(duì)任意都有成立,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,,則的值為()A.0 B.2 C.4 D.112.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,.若,則_________.14.若函數(shù)()的圖象與直線相切,則______.15.如圖,在直四棱柱中,底面是平行四邊形,點(diǎn)是棱的中點(diǎn),點(diǎn)是棱靠近的三等分點(diǎn),且三棱錐的體積為2,則四棱柱的體積為______.16.若函數(shù),則使得不等式成立的的取值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).(1)求的長(zhǎng);(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.18.(12分)已知函數(shù),其中為實(shí)常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時(shí),設(shè)直線與函數(shù)的圖象相交于不同的兩點(diǎn),,證明:.19.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說(shuō)明理由.20.(12分)我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個(gè)數(shù)為,這個(gè)向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).21.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對(duì)應(yīng)的變換作用下得到另一曲線,求曲線的方程.22.(10分)某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽取),所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點(diǎn)共線可得.【詳解】解:依題:,又三點(diǎn)共線,,解得.故選:.本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過(guò)向量的運(yùn)算來(lái)解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點(diǎn)共線?(為平面內(nèi)任一點(diǎn),)2.D【解析】
設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.3.C【解析】
根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當(dāng)且僅當(dāng)時(shí)取“=”號(hào).
答案:C本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗(yàn)證等號(hào)能否成立,屬于基礎(chǔ)題.4.C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.5.B【解析】
求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號(hào)零點(diǎn).由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號(hào)零點(diǎn),令,則,令,則問(wèn)題即在上有零點(diǎn),由于在上遞增,所以的取值范圍是.故選:B本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點(diǎn)問(wèn)題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6.A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.7.D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.8.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.9.A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績(jī)的中位數(shù)為,乙同學(xué)成績(jī)的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績(jī)更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).10.D【解析】
由復(fù)數(shù)除法運(yùn)算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo).得結(jié)論.【詳解】,,對(duì)應(yīng)點(diǎn)為,在第四象限.故選:D.本題考查復(fù)數(shù)的除法運(yùn)算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.11.C【解析】
根據(jù)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱,所以的圖象關(guān)于原點(diǎn)對(duì)稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因?yàn)?,所?因?yàn)椋?,所?故選:C.本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.12.A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】解:由,得,.故選.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】分析:首先設(shè)出相應(yīng)的直角邊長(zhǎng),利用余弦勾股定理得到相應(yīng)的斜邊長(zhǎng),之后應(yīng)用余弦定理得到直角邊長(zhǎng)之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對(duì)邊比臨邊,求得對(duì)應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡(jiǎn)整理得,即,解得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)解三角形的問(wèn)題,在解題的過(guò)程中,注意分析要求對(duì)應(yīng)角的正切值,需要求誰(shuí),而題中所給的條件與對(duì)應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長(zhǎng),利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.14.2【解析】
設(shè)切點(diǎn)由已知可得,即可解得所求.【詳解】設(shè),因?yàn)?,所以,即,又?所以,即,.故答案為:.本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.15.12【解析】
由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為。本題主要考查了棱柱與棱錐的體積的計(jì)算問(wèn)題,其中解答中正確認(rèn)識(shí)幾何體的結(jié)構(gòu)特征,合理、恰當(dāng)?shù)乇硎局彼睦庵忮F的體積是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,以及空間想象能力,屬于中檔試題。16.【解析】
分,兩種情況代入討論即可求解.【詳解】,當(dāng)時(shí),,符合;當(dāng)時(shí),,不滿足.故答案為:本題主要考查了分段函數(shù)的計(jì)算,考查了分類討論的思想.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點(diǎn)到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長(zhǎng);(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個(gè)交點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點(diǎn)間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點(diǎn).則圓心坐標(biāo)為,半徑為1,則由點(diǎn)到直線距離公式可知,所以.(2)點(diǎn)的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡(jiǎn)可得,解得,所以兩點(diǎn)坐標(biāo)為,所以,由兩點(diǎn)間距離公式可得.本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點(diǎn)到直線距離公式應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用,直線與圓交點(diǎn)坐標(biāo)求法,屬于基礎(chǔ)題.18.(1);(2)見解析.【解析】
(1)將所求問(wèn)題轉(zhuǎn)化為在上有解,進(jìn)一步轉(zhuǎn)化為函數(shù)最值問(wèn)題;(2)將所證不等式轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為,然后再通過(guò)構(gòu)造加以證明即可.【詳解】(1),根據(jù)題意,在內(nèi)存在單調(diào)減區(qū)間,則不等式在上有解,由得,設(shè),則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以當(dāng)時(shí),,所以存在,使得成立,所以的取值范圍為。(2)當(dāng)時(shí),,則,從而所證不等式轉(zhuǎn)化為,不妨設(shè),則不等式轉(zhuǎn)化為,即,即,令,則不等式轉(zhuǎn)化為,因?yàn)?,則,從而不等式化為,設(shè),則,所以在上單調(diào)遞增,所以即不等式成立,故原不等式成立.本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)證明不等式,這里要強(qiáng)調(diào)一點(diǎn),在證明不等式時(shí),通常是構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為函數(shù)的極值或最值來(lái)處理,本題是一道有高度的壓軸解答題.19.(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當(dāng)時(shí)取等號(hào).故,且當(dāng)時(shí)取等號(hào).所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點(diǎn)定位】基本不等式.20.(1),.(2),【解析】
(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)都寫出來(lái),再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進(jìn)行化簡(jiǎn),得出最終結(jié)果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)有:,,,,它們的范數(shù)依次為1,1,1,1,故,.(2)當(dāng)n為偶數(shù)時(shí),在向量的n個(gè)坐標(biāo)中,要使得范數(shù)為奇數(shù),則0的個(gè)數(shù)一定是奇數(shù),所以可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 零售門店運(yùn)營(yíng)數(shù)字化2025年智慧支付解決方案研究報(bào)告
- 面向復(fù)雜系統(tǒng)的模式設(shè)計(jì)-全面剖析
- 鐵路交通與區(qū)域經(jīng)濟(jì)互動(dòng)-全面剖析
- 高精度測(cè)量技術(shù)發(fā)展-全面剖析
- 科研機(jī)構(gòu)安全生產(chǎn)意識(shí)提升專項(xiàng)計(jì)劃
- 2025年智能建筑系統(tǒng)集成與節(jié)能降耗技術(shù)專利布局與保護(hù)策略分析報(bào)告
- 心理健康教育與自我認(rèn)知提升計(jì)劃
- 2025-2030年中國(guó)電子駐車制動(dòng)器(EPB)市場(chǎng)深度評(píng)估及發(fā)展趨勢(shì)調(diào)研報(bào)告
- 2025-2030年中國(guó)電子玩具市場(chǎng)盈利分析及未來(lái)趨勢(shì)發(fā)展預(yù)測(cè)研究報(bào)告
- 2025-2030年中國(guó)電動(dòng)摩托車市場(chǎng)投資分析分析與發(fā)展前景展望報(bào)告
- 智能音箱行業(yè)發(fā)展趨勢(shì)與市場(chǎng)前景深度解析
- 2025上半年廣西現(xiàn)代物流集團(tuán)社會(huì)招聘校園招聘149人筆試參考題庫(kù)附帶答案詳解
- 出售東西合同樣本
- 2024年榆林能源集團(tuán)有限公司招聘工作人員筆試真題
- 防汛抗旱合同協(xié)議
- 2025年氣瓶充裝作業(yè)人員P證理論考試練習(xí)試題(400題)附答案
- 2025年4月浙江省嘉興市嘉善縣初中教學(xué)質(zhì)量調(diào)研中考一模數(shù)學(xué)卷(原卷版+解析版)
- 2025-2030中國(guó)皮膚填充材料行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2024年度企業(yè)所得稅匯算清繳最 新稅收政策解析及操作規(guī)范專題培訓(xùn)(洛陽(yáng)稅務(wù)局)
- 2025年武漢二調(diào)數(shù)學(xué)試題及答案
- 2025年保安證考試答題技巧與試題答案
評(píng)論
0/150
提交評(píng)論