




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGEPAGE1第三節(jié)圓的方程[最新考綱]1.駕馭確定圓的幾何要素,駕馭圓的標(biāo)準(zhǔn)方程與一般方程.2.初步了解用代數(shù)方法處理幾何問題的思想.1.圓的定義及方程定義平面內(nèi)與定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合(軌跡)標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2(r>0)圓心(a,b),半徑r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F圓心eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2))),半徑eq\f(1,2)eq\r(D2+E2-4F)2.點(diǎn)與圓的位置關(guān)系點(diǎn)M(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系:(1)若M(x0,y0)在圓外,則(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圓上,則(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圓內(nèi),則(x0-a)2+(y0-b)2<r2.eq\a\vs4\al([常用結(jié)論])圓的三特性質(zhì)(1)圓心在過切點(diǎn)且垂直于切線的直線上;(2)圓心在任一弦的中垂線上;(3)兩圓相切時(shí),切點(diǎn)與兩圓心三點(diǎn)共線.一、思索辨析(正確的打“√”,錯(cuò)誤的打“×”)(1)確定圓的幾何要素是圓心與半徑.()(2)方程x2+y2=a2表示半徑為a的圓.()(3)方程x2+y2+4mx-2y+5m(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圓的充要條件是A=C≠0,B=0,D2+E2-4AF>0.()[答案](1)√(2)×(3)×(4)√二、教材改編1.圓x2+y2-4x+6y=0的圓心坐標(biāo)和半徑分別是()A.(2,3),3 B.(-2,3),eq\r(3)C.(-2,-3),13 D.(2,-3),eq\r(13)D[圓的方程可化為(x-2)2+(y+3)2=13,所以圓心坐標(biāo)是(2,-3),半徑r=eq\r(13).]2.已知點(diǎn)A(1,-1),B(-1,1),則以線段AB為直徑的圓的方程是()A.x2+y2=2 B.x2+y2=eq\r(2)C.x2+y2=1 D.x2+y2=4A[AB的中點(diǎn)坐標(biāo)為(0,0),|AB|=eq\r([1--1]2+-1-12)=2eq\r(2),所以圓的方程為x2+y2=2.]3.過點(diǎn)A(1,-1),B(-1,1),且圓心在直線x+y-2=0上的圓的方程是()A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4C[設(shè)圓心C的坐標(biāo)為(a,b),半徑為r.因?yàn)閳A心C在直線x+y-2=0上,所以b=2-a.又|CA|2=|CB|2,所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,所以a=1,b=1.所以r=2.所以方程為(x-1)2+(y-1)2=4.]4.在平面直角坐標(biāo)系中,經(jīng)過三點(diǎn)(0,0),(1,1),(2,0)的圓的方程為________.x2+y2-2x=0[設(shè)圓的方程為x2+y2+Dx+Ey+F=0.∵圓經(jīng)過點(diǎn)(0,0),(1,1),(2,0),∴eq\b\lc\{\rc\(\a\vs4\al\co1(F=0,,2+D+E+F=0,,4+2D+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-2,,E=0,,F=0.))∴圓的方程為x2+y2-2x=0.]考點(diǎn)1圓的方程求圓的方程的2種方法(1)幾何法:依據(jù)圓的幾何性質(zhì),干脆求出圓心坐標(biāo)和半徑,進(jìn)而寫出方程.(2)待定系數(shù)法:①若已知條件與圓心(a,b)和半徑r有關(guān),則設(shè)圓的標(biāo)準(zhǔn)方程,求出a,b,r的值;②選擇圓的一般方程,依據(jù)已知條件列出關(guān)于D,E,F(xiàn)的方程組,進(jìn)而求出D,E,F(xiàn)的值.(1)[一題多解]已知圓E經(jīng)過三點(diǎn)A(0,1),B(2,0),C(0,-1),且圓心在x軸的正半軸上,則圓E的標(biāo)準(zhǔn)方程為()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))2+y2=eq\f(25,4) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(3,4)))2+y2=eq\f(25,16)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,16) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,4)(2)[一題多解]已知圓C的圓心在直線x+y=0上,圓C與直線x-y=0相切,且在直線x-y-3=0上截得的弦長(zhǎng)為eq\r(6),則圓C的方程為________.(1)C(2)(x-1)2+(y+1)2=2[(1)法一:(待定系數(shù)法)設(shè)圓E的一般方程為x2+y2+Dx+Ey+F=0(D2+E2-4F則由題意得eq\b\lc\{\rc\(\a\vs4\al\co1(1+E+F=0,,4+2D+F=0,,1-E+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-\f(3,2),,E=0,,F=-1,))所以圓E的一般方程為x2+y2-eq\f(3,2)x-1=0,即eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,16).法二:(幾何法)因?yàn)閳AE經(jīng)過點(diǎn)A(0,1),B(2,0),所以圓E的圓心在線段AB的垂直平分線y-eq\f(1,2)=2(x-1)上.又圓E的圓心在x軸的正半軸上,所以圓E的圓心坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4),0)).則圓E的半徑為|EB|=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(2-\f(3,4)))2+0-02)=eq\f(5,4),所以圓E的標(biāo)準(zhǔn)方程為eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,16).(2)法一:由圓C的圓心在直線x+y=0上,∴設(shè)圓C的圓心為(a,-a).又∵圓C與直線x-y=0相切,∴半徑r=eq\f(2|a|,\r(2))=eq\r(2)|a|.又圓C在直線x-y-3=0上截得的弦長(zhǎng)為eq\r(6),圓心(a,-a)到直線x-y-3=0的距離d=eq\f(|2a-3|,\r(2)),∴d2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),2)))2=r2,即eq\f(2a-32,2)+eq\f(3,2)=2a2,解得a=1,∴圓C的方程為(x-1)2+(y+1)2=2.法二:設(shè)所求圓的方程為x2+y2+Dx+Ey+F=0,則圓心為eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2))),半徑r=eq\f(1,2)eq\r(D2+E2-4F),∵圓心在直線x+y=0上,∴-eq\f(D,2)-eq\f(E,2)=0,即D+E=0,①又∵圓C與直線x-y=0相切,∴eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(-\f(D,2)+\f(E,2))),\r(2))=eq\f(1,2)eq\r(D2+E2-4F),即(D-E)2=2(D2+E2-4F∴D2+E2+2DE-8F=0.又知圓心eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2)))到直線x-y-3=0的距離d=eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(-\f(D,2)+\f(E,2)-3)),\r(2)),由已知得d2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),2)))2=r2,∴(D-E+6)2+12=2(D2+E2-4F),聯(lián)立①②③,解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-2,,E=2,,F=0,))故所求圓的方程為x2+y2-2x+2y=0,即(x-1)2+(y+1)2=2.]幾何法與待定系數(shù)法是解答圓的有關(guān)問題的兩種常用方法,求解圓的方程時(shí),可采納數(shù)形結(jié)合的思想充分運(yùn)用圓的幾何性質(zhì),達(dá)到事半功倍的效果.1.若不同的四點(diǎn)A(5,0),B(-1,0),C(-3,3),D(a,3)共圓,則a的值為________.7[設(shè)圓的方程為x2+y2+Dx+Ey+F=0(D2+E2-4F>0),分別代入A,B,Ceq\b\lc\{\rc\(\a\vs4\al\co1(25+5D+F=0,,1-D+F=0,,9+9-3D+3E+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-4,,E=-\f(25,3),,F=-5.))所以A,B,C三點(diǎn)確定的圓的方程為x2+y2-4x-eq\f(25,3)y-5=0.因?yàn)镈(a,3)也在此圓上,所以a2+9-4a所以a=7或a=-3(舍去).即a的值為7.]2.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a(-2,-4)5[由已知方程表示圓,則a2=a+2,解得a=2或a=-1.當(dāng)a=2時(shí),方程不滿意表示圓的條件,故舍去.當(dāng)a=-1時(shí),原方程為x2+y2+4x+8y-5=0,化為標(biāo)準(zhǔn)方程為(x+2)2+(y+4)2=25,表示以(-2,-4)為圓心,半徑為5的圓.]考點(diǎn)2與圓有關(guān)的最值問題斜率型、截距型、距離型最值問題與圓有關(guān)的最值問題的3種幾何轉(zhuǎn)化法(1)形如μ=eq\f(y-b,x-a)形式的最值問題可轉(zhuǎn)化為動(dòng)直線斜率的最值問題.(2)形如t=ax+by形式的最值問題可轉(zhuǎn)化為動(dòng)直線截距的最值問題.(3)形如m=(x-a)2+(y-b)2形式的最值問題可轉(zhuǎn)化為動(dòng)點(diǎn)到定點(diǎn)的距離的平方的最值問題.已知實(shí)數(shù)x,y滿意方程x2+y2-4x+1=0.(1)求eq\f(y,x)的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.[解]原方程可化為(x-2)2+y2=3,表示以(2,0)為圓心,eq\r(3)為半徑的圓.(1)eq\f(y,x)的幾何意義是圓上一點(diǎn)與原點(diǎn)連線的斜率,所以設(shè)eq\f(y,x)=k,即y=kx.當(dāng)直線y=kx與圓相切時(shí),斜率k取最大值或最小值,此時(shí)eq\f(|2k-0|,\r(k2+1))=eq\r(3),解得k=±eq\r(3)(如圖1).所以eq\f(y,x)的最大值為eq\r(3),最小值為-eq\r(3).圖1圖2圖3(2)y-x可看作是直線y=x+b在y軸上的截距,當(dāng)直線y=x+b與圓相切時(shí),縱截距b取得最大值或最小值,此時(shí)eq\f(|2-0+b|,\r(2))=eq\r(3),解得b=-2±eq\r(6)(如圖2).所以y-x的最大值為-2+eq\r(6),最小值為-2-eq\r(6).(3)x2+y2表示圓上的一點(diǎn)與原點(diǎn)距離的平方,由平面幾何學(xué)問知,x2+y2在原點(diǎn)和圓心連線與圓的兩個(gè)交點(diǎn)處取得最大值和最小值(如圖3).又圓心到原點(diǎn)的距離為eq\r(2-02+0-02)=2,所以x2+y2的最大值是(2+eq\r(3))2=7+4eq\r(3),x2+y2的最小值是(2-eq\r(3))2=7-4eq\r(3).與圓有關(guān)的斜率型、截距型、距離型最值問題一般依據(jù)相應(yīng)幾何意義,利用圓的幾何性質(zhì)數(shù)形結(jié)合求解.已知點(diǎn)A(-1,0),B(0,2),點(diǎn)P是圓C:(x-1)2+y2=1上隨意一點(diǎn),則△PAB面積的最大值與最小值分別是()A.2,2-eq\f(\r(5),2) B.2+eq\f(\r(5),2),2-eq\f(\r(5),2)C.eq\r(5),4-eq\r(5) D.eq\f(\r(5),2)+1,eq\f(\r(5),2)-1B[由題意知|AB|=eq\r(-12+-22)=eq\r(5),lAB:2x-y+2=0,由題意知圓C的圓心坐標(biāo)為(1,0),∴圓心到直線lAB的距離d=eq\f(|2-0+2|,\r(4+1))=eq\f(4\r(5),5).∴S△PAB的最大值為eq\f(1,2)×eq\r(5)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4\r(5),5)+1))=2+eq\f(\r(5),2),S△PAB的最小值為eq\f(1,2)×eq\r(5)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4\r(5),5)-1))=2-eq\f(\r(5),2).]利用對(duì)稱性求最值求解形如|PM|+|PN|(其中M,N均為動(dòng)點(diǎn))且與圓C有關(guān)的折線段的最值問題的基本思路:(1)“動(dòng)化定”,把與圓上動(dòng)點(diǎn)的距離轉(zhuǎn)化為與圓心的距離.(2)“曲化直”,即將折線段之和轉(zhuǎn)化為同始終線上的兩線段之和,一般要通過對(duì)稱性解決.已知圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M,N分別是圓C1,C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為()A.5eq\r(2)-4 B.eq\r(17)-1C.6-2eq\r(2) D.eq\r(17)A[(圖略)P是x軸上隨意一點(diǎn),則|PM|的最小值為|PC1|-1,同理|PN|的最小值為|PC2|-3,則|PM|+|PN|的最小值為|PC1|+|PC2|-4.作C1關(guān)于x軸的對(duì)稱點(diǎn)C′1(2,-3).所以|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=5eq\r(2),即|PM|+|PN|=|PC1|+|PC2|-4≥5eq\r(2)-4.]本題在求解中要立足了兩點(diǎn):(1)削減動(dòng)點(diǎn)的個(gè)數(shù),借助圓的幾何性質(zhì)化圓上隨意一點(diǎn)到點(diǎn)(a,b)的距離的最大(小)值為圓心到點(diǎn)(a,b)的距離加(減)半徑問題;(2)“曲化直”,即借助對(duì)稱性把折線段轉(zhuǎn)化為同始終線上的兩線段之和的最值問題解決.[老師備選例題](1)設(shè)點(diǎn)P是函數(shù)y=-eq\r(4-x-12)圖像上的隨意一點(diǎn),點(diǎn)Q坐標(biāo)為(2a,a-3)(a∈R),則|PQ|的最小值為________.(2)已知A(0,2),點(diǎn)P在直線x+y+2=0上,點(diǎn)Q在圓C:x2+y2-4x-2y=0上,則|PA|+|PQ|的最小值是________.(1)eq\r(5)-2(2)2eq\r(5)[(1)函數(shù)y=-eq\r(4-x-12)的圖像表示圓(x-1)2+y2=4在x軸及下方的部分,令點(diǎn)Q的坐標(biāo)為(x,y),則eq\b\lc\{\rc\(\a\vs4\al\co1(x=2a,,y=a-3))得y=eq\f(x,2)-3,即x-2y-6=0,作出圖像如圖所示,由于圓心(1,0)到直線x-2y-6=0的距離d=eq\f(|1-2×0-6|,\r(12+-22))=eq\r(5)>2,所以直線x-2y-6=0與圓(x-1)2+y2=4相離,因此|PQ|的最小值是eq\r(5)-2.(2)因?yàn)閳AC:x2+y2-4x-2y=0,故圓C是以C(2,1)為圓心,半徑r=eq\r(5)的圓.設(shè)點(diǎn)A(0,2)關(guān)于直線x+y+2=0的對(duì)稱點(diǎn)為A′(m,n),故eq\b\lc\{\rc\(\a\vs4\al\co1(\f(m+0,2)+\f(n+2,2)+2=0,,\f(n-2,m-0)=1,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(m=-4,,n=-2,))故A′(-4,-2).連接A′C交圓C于Q(圖略),由對(duì)稱性可知|PA|+|PQ|=|A′P|+|PQ|≥|A′Q|=|A′C|-r=2eq\r(5).](2024·上饒模擬)一束光線從點(diǎn)A(-3,2)動(dòng)身,經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上的最短路徑的長(zhǎng)度是()A.4 B.5C.5eq\r(2)-1 D.2eq\r(6)-1C[依據(jù)題意,設(shè)A′與A關(guān)于x軸對(duì)稱,且A(-3,2),則A′的坐標(biāo)為(-3,-2),又由|A′C|=eq\r(25+25)=5eq\r(2),則A′到圓C上的點(diǎn)的最短距離為5eq\r(2)-1.故這束光線從點(diǎn)A(-3,2)動(dòng)身,經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上的最短路徑的長(zhǎng)度是5eq\r(2)-1,故選C.]考點(diǎn)3與圓有關(guān)的軌跡問題求與圓有關(guān)的軌跡問題的4種方法(1)干脆法:干脆依據(jù)題設(shè)給定的條件列出方程求解.(2)定義法:依據(jù)圓的定義列方程求解.(3)幾何法:利用圓的幾何性質(zhì)得出方程求解.(4)代入法(相關(guān)點(diǎn)法):找出要求的點(diǎn)與已知點(diǎn)的關(guān)系,代入已知點(diǎn)滿意的關(guān)系式求解.[一題多解](2024·衡水調(diào)研)已知直角三角形ABC的斜邊為AB,且A(-1,0),B(3,0).求:(1)直角頂點(diǎn)C的軌跡方程;(2)直角邊BC的中點(diǎn)M的軌跡方程.[解](1)法一:設(shè)C(x,y),因?yàn)锳,B,C三點(diǎn)不共線,所以y≠0.因?yàn)锳C⊥BC,所以kAC·kBC=-1,又kAC=eq\f(y,x+1),kBC=eq\f(y,x-3),所以eq\f(y,x+1)·eq\f(y,x-3)=-1,化簡(jiǎn)得x2+y2-2x-3=0.因此,直角頂點(diǎn)C的軌跡方程為x2+y2-2x-3=0(y≠0).法二:設(shè)AB的中點(diǎn)為D,由中點(diǎn)坐標(biāo)公式得D(1,0),由直角三角形的性質(zhì)知|CD|=eq\f(1,2)|AB|=2.由圓的定義知,動(dòng)點(diǎn)C的軌跡是以D(1,0)為圓心,2為半徑的圓(由于A,B,C三點(diǎn)不共線,所以應(yīng)除去與x軸的交點(diǎn)).所以直角頂點(diǎn)C的軌跡方程為(x-1)2+y2=4(y≠0).(2)設(shè)M(x,y),C(x0,y0),因?yàn)锽(3,0),M是線段BC的中點(diǎn),由中點(diǎn)坐標(biāo)公式得x=eq\f(x0+3,2),y=eq\f(y0+0,2),所以x0=2x-3,y0=2y.由(1)知,點(diǎn)C的軌跡方程為(x-1)2+y2=4(y≠0),將x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1.因此動(dòng)點(diǎn)M的軌跡方程為(x-2)2+y2=1(y≠0).此類問題在解題過程中,常因忽視對(duì)特別點(diǎn)的驗(yàn)證而造成解題失誤.[老師備選例題]已知過原點(diǎn)的動(dòng)直線l與圓C1:x2+y2-6x+5=0相交于不同的兩點(diǎn)A,B.(1)求圓C1的圓心坐標(biāo);(2)求線段AB的中點(diǎn)M的軌跡C的方程.[解](1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圓C1的圓心坐標(biāo)為(3,0).(2)設(shè)M(x,y),因?yàn)辄c(diǎn)M為線段AB的中點(diǎn),所以C1M⊥AB,所以kC1M·kAB=-1,當(dāng)x≠3時(shí)可得eq\f(y,x-3)·eq\f(y,x)=-1,整理得eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))2+y2=eq\f(9,4),又當(dāng)直線l與x軸重合時(shí),M點(diǎn)坐標(biāo)為(3,0),代入上式成立.設(shè)直線l的方程為y=kx,與x2+y2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 總包經(jīng)理勞務(wù)合同協(xié)議
- 2025年租賃合同格式范本
- 2025簡(jiǎn)易倉儲(chǔ)租賃合同
- 民宿拍攝合同協(xié)議模板
- 模板設(shè)備轉(zhuǎn)讓合同協(xié)議
- 2025中文合同模板范文
- 戀愛到結(jié)婚合同協(xié)議
- 比賽活動(dòng)承辦合同協(xié)議
- 2025財(cái)產(chǎn)權(quán)利質(zhì)押借款合同范本
- 和業(yè)務(wù)合作協(xié)議合同協(xié)議
- 區(qū)域地理,高二地理
- 圖書館消防安全培訓(xùn)課件
- 中小型會(huì)計(jì)師事務(wù)所發(fā)展策略
- 《拼多多運(yùn)營方案》課件
- 委托第三方代收款協(xié)議書x
- 學(xué)習(xí)科學(xué)研究與方法論
- 交通運(yùn)輸安全生產(chǎn)監(jiān)管監(jiān)察信息平臺(tái)解決方案
- 西方近現(xiàn)代興趣教學(xué)思想研究
- 公司電腦常見問題處理手冊(cè)
- 我眼中的抗戰(zhàn)-抗戰(zhàn)中的家書優(yōu)秀PPT
- 計(jì)算機(jī)網(wǎng)絡(luò)安全分析及防范措施畢業(yè)論文
評(píng)論
0/150
提交評(píng)論