2024-2025學(xué)年福建省龍海市第二中學(xué)高三四模數(shù)學(xué)試題試卷含解析_第1頁(yè)
2024-2025學(xué)年福建省龍海市第二中學(xué)高三四模數(shù)學(xué)試題試卷含解析_第2頁(yè)
2024-2025學(xué)年福建省龍海市第二中學(xué)高三四模數(shù)學(xué)試題試卷含解析_第3頁(yè)
2024-2025學(xué)年福建省龍海市第二中學(xué)高三四模數(shù)學(xué)試題試卷含解析_第4頁(yè)
2024-2025學(xué)年福建省龍海市第二中學(xué)高三四模數(shù)學(xué)試題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024-2025學(xué)年福建省龍海市第二中學(xué)高三四模數(shù)學(xué)試題試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若集合,,則()A. B. C. D.2.已知四棱錐,底面ABCD是邊長(zhǎng)為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為()A. B. C. D.13.在中,內(nèi)角的平分線交邊于點(diǎn),,,,則的面積是()A. B. C. D.4.若向量,,則與共線的向量可以是()A. B. C. D.5.已知向量,且,則等于()A.4 B.3 C.2 D.16.已知集合,,則集合的真子集的個(gè)數(shù)是()A.8 B.7 C.4 D.37.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且,若,則()A.0 B.1 C.673 D.6748.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.159.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.10.過(guò)雙曲線的左焦點(diǎn)作傾斜角為的直線,若與軸的交點(diǎn)坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.11.已知,如圖是求的近似值的一個(gè)程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.12.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為5分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內(nèi)有一個(gè)與其各面都相切的球O1,同時(shí)在三棱柱外有一個(gè)外接球.若,,,則球的表面積為_(kāi)_____.14.的展開(kāi)式中含的系數(shù)為_(kāi)_________.(用數(shù)字填寫(xiě)答案)15.在中,角所對(duì)的邊分別為,,的平分線交于點(diǎn)D,且,則的最小值為_(kāi)_______.16.在中,,,,則繞所在直線旋轉(zhuǎn)一周所形成的幾何體的表面積為_(kāi)_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,橢圓C的長(zhǎng)軸長(zhǎng)為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.18.(12分)已知函數(shù),其中.(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè),求證:;(Ⅲ)若對(duì)于恒成立,求的最大值.19.(12分)設(shè)函數(shù).(1)時(shí),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),設(shè)的最小值為,若恒成立,求實(shí)數(shù)t的取值范圍.20.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點(diǎn)的個(gè)數(shù).21.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離.22.(10分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進(jìn)而可知滿足.【詳解】依題意,;而,故,則.故選:B.本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補(bǔ)集關(guān)系的應(yīng)用,屬于中檔題.2.B【解析】

過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫嫫矫鍭BCD,所以平面ABCD,所以.因?yàn)榈酌鍭BCD是邊長(zhǎng)為1的正方形,,所以.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.易證平面平面ABE,所以點(diǎn)H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因?yàn)椋裕?,?dāng)時(shí),等號(hào)成立.此時(shí)EH與ED重合,所以,.故選:B.本題考查空間中點(diǎn)到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意輔助線及面面垂直的應(yīng)用.3.B【解析】

利用正弦定理求出,可得出,然后利用余弦定理求出,進(jìn)而求出,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.本題考查三角形面積的計(jì)算,涉及正弦定理和余弦定理以及三角形面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.4.B【解析】

先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對(duì)應(yīng),縱坐標(biāo)與縱坐標(biāo)對(duì)應(yīng),切不可錯(cuò)位.5.D【解析】

由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因?yàn)?,且,,則.故選:.本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6.D【解析】

轉(zhuǎn)化條件得,利用元素個(gè)數(shù)為n的集合真子集個(gè)數(shù)為個(gè)即可得解.【詳解】由題意得,,集合的真子集的個(gè)數(shù)為個(gè).故選:D.本題考查了集合的化簡(jiǎn)和運(yùn)算,考查了集合真子集個(gè)數(shù)問(wèn)題,屬于基礎(chǔ)題.7.B【解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡(jiǎn)可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)椋?,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.本題考查函數(shù)奇偶性與周期性綜合問(wèn)題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問(wèn)題多考查求值問(wèn)題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.8.B【解析】,∴,選B.9.D【解析】

由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.10.A【解析】

直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項(xiàng)求解即可【詳解】直線的方程為,令,得.因?yàn)?,所以,只有選項(xiàng)滿足條件.故選:A本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運(yùn)算求解能力.11.C【解析】

由于中正項(xiàng)與負(fù)項(xiàng)交替出現(xiàn),根據(jù)可排除選項(xiàng)A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.12.C【解析】

根據(jù)題目所給圖像,填寫(xiě)好表格,由表格數(shù)據(jù)選出正確選項(xiàng).【詳解】根據(jù)雷達(dá)圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運(yùn)算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.本題考查統(tǒng)計(jì)問(wèn)題,考查數(shù)據(jù)處理能力和應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:本題主要考查幾何體的內(nèi)切球和外接球問(wèn)題,考查球的表面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.14.【解析】由題意得,二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,則,所以得系數(shù)為.15.9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡(jiǎn)得,因此當(dāng)且僅當(dāng)時(shí)取等號(hào),則的最小值為.點(diǎn)睛:在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.16.【解析】

由題知該旋轉(zhuǎn)體為兩個(gè)倒立的圓錐底對(duì)底組合在一起,根據(jù)圓錐側(cè)面積計(jì)算公式可得.【詳解】解:由題知該旋轉(zhuǎn)體為兩個(gè)倒立的圓錐底對(duì)底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.本題考查旋轉(zhuǎn)體的表面積計(jì)算問(wèn)題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)存在,當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.【解析】

(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長(zhǎng)軸長(zhǎng)為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn).設(shè)點(diǎn),,,,將直線的方程代入,化簡(jiǎn),利用韋達(dá)定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.理由如下:設(shè)點(diǎn),,將直線的方程代入,并整理,得.(*)則,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O,所以,即.又,于是,解得,經(jīng)檢驗(yàn)知:此時(shí)(*)式的,符合題意.所以當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O本題考查橢圓方程的求法,橢圓的簡(jiǎn)單性質(zhì),直線與橢圓位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.18.(Ⅰ)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)證明見(jiàn)解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導(dǎo)可得,所以在上為增函數(shù),進(jìn)而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)利用導(dǎo)數(shù)可得在區(qū)間上存在唯一零點(diǎn),所以函數(shù)在遞減,在,遞增,則,進(jìn)而可證;(Ⅲ)條件等價(jià)于對(duì)于恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)可得的單調(diào)性,即可得到的最小值為,再次構(gòu)造函數(shù)(a),,利用導(dǎo)數(shù)得其單調(diào)區(qū)間,進(jìn)而求得最大值.【詳解】(Ⅰ)當(dāng)時(shí),,則,所以,又因?yàn)?,所以在上為增函?shù),因?yàn)椋援?dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點(diǎn),設(shè)零點(diǎn)為,則,且,當(dāng)時(shí),,當(dāng),,,所以函數(shù)在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因?yàn)閷?duì)于恒成立,即對(duì)于恒成立,不妨令,因?yàn)?,,所以的解為,則當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),所以的最小值為,則,不妨令(a),,則(a),解得,所以當(dāng)時(shí),(a),(a)為增函數(shù),當(dāng)時(shí),(a),(a)為減函數(shù),所以(a)的最大值為,則的最大值為.本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,以及函數(shù)不等式恒成立問(wèn)題的解法,意在考查學(xué)生等價(jià)轉(zhuǎn)化思想和數(shù)學(xué)運(yùn)算能力,屬于較難題.19.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】

(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對(duì)導(dǎo)數(shù)的符號(hào)有影響,對(duì)參數(shù)分類(lèi),再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實(shí)數(shù)的取值范圍的左端點(diǎn).【詳解】解:(1)解:,當(dāng)時(shí),,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因?yàn)椋?,,令,則恒成立,由于,當(dāng)時(shí),,故函數(shù)在上是減函數(shù),所以成立;當(dāng)時(shí),若則,故函數(shù)在上是增函數(shù),即對(duì)時(shí),,與題意不符;綜上,為所求.本題考查導(dǎo)數(shù)在最大值與最小值問(wèn)題中的應(yīng)用,求解本題關(guān)鍵是根據(jù)導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個(gè)求函數(shù)的最值的問(wèn)題,此類(lèi)題運(yùn)算量較大,轉(zhuǎn)化靈活,解題時(shí)極易因?yàn)樽冃闻c運(yùn)算出錯(cuò),故做題時(shí)要認(rèn)真仔細(xì).20.(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)求導(dǎo)后分析導(dǎo)函數(shù)的正負(fù)再判斷單調(diào)性即可.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,再換元將原方程轉(zhuǎn)化為,再求導(dǎo)分析的圖像數(shù)形結(jié)合求解即可.【詳解】(1)的定義域?yàn)?,當(dāng)時(shí),,所以在單調(diào)遞減;當(dāng)時(shí),,所以在單調(diào)遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點(diǎn)等價(jià)于方程實(shí)數(shù)根,令則原方程轉(zhuǎn)化為,令,.令,,∴,,,,,當(dāng)時(shí),,當(dāng)時(shí),.如圖可知①當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);②當(dāng)時(shí),有兩個(gè)零點(diǎn),即有兩個(gè)零點(diǎn);③當(dāng)時(shí),有唯一零點(diǎn),即有唯一零點(diǎn);④時(shí),此時(shí)無(wú)零點(diǎn),即此時(shí)無(wú)零點(diǎn).本題主要考查了利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性的方法,同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)零點(diǎn)的問(wèn)題,屬于中檔題.21.(1)證明見(jiàn)解析(2)【解析】

(1)因?yàn)檎叫蜛BCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因?yàn)槠矫鍭BMN,平面ABMN,所以,,因?yàn)?,所以,因?yàn)?,所以,所以,因?yàn)樵谥苯翘菪蜛BMN中,,所以,所以,所以,因?yàn)椋云矫妫?)如圖,取BM的中點(diǎn)E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因?yàn)槠矫鍯DM,平面CDM,所以NE∥平面CDM,所以點(diǎn)N到平面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論