




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省哈爾濱六中2022-2023學(xué)年高考?jí)狠S卷數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.2.如圖,中,點(diǎn)D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得3.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.4.已知雙曲線的左,右焦點(diǎn)分別為、,過(guò)的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率為()A. B. C. D.5.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④6.函數(shù)的圖象大致為()A. B.C. D.7.若直線的傾斜角為,則的值為()A. B. C. D.8.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.49.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.10.已知向量,則向量在向量方向上的投影為()A. B. C. D.11.中國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問(wèn)物幾何?”人們把此類(lèi)題目稱(chēng)為“中國(guó)剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問(wèn)題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.12.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)14.若、滿足約束條件,則的最小值為_(kāi)_____.15.若關(guān)于的不等式在上恒成立,則的最大值為_(kāi)_________.16.若,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若曲線的切線方程為,求實(shí)數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.18.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.19.(12分)的內(nèi)角的對(duì)邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.20.(12分)已知的內(nèi)角、、的對(duì)邊分別為、、,滿足.有三個(gè)條件:①;②;③.其中三個(gè)條件中僅有兩個(gè)正確,請(qǐng)選出正確的條件完成下面兩個(gè)問(wèn)題:(1)求;(2)設(shè)為邊上一點(diǎn),且,求的面積.21.(12分)已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),與的公共弦的長(zhǎng)為.(1)求的方程;(2)過(guò)點(diǎn)的直線與相交于、兩點(diǎn),與相交于、兩點(diǎn),且與同向,設(shè)在點(diǎn)處的切線與軸的交點(diǎn)為,證明:直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形;(3)為上的動(dòng)點(diǎn),、為長(zhǎng)軸的兩個(gè)端點(diǎn),過(guò)點(diǎn)作的平行線交橢圓于點(diǎn),過(guò)點(diǎn)作的平行線交橢圓于點(diǎn),請(qǐng)問(wèn)的面積是否為定值,并說(shuō)明理由.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2.A【解析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進(jìn)行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過(guò)點(diǎn)作交于點(diǎn),過(guò)作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點(diǎn)睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.3.D【解析】
首先判斷循環(huán)結(jié)構(gòu)類(lèi)型,得到判斷框內(nèi)的語(yǔ)句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語(yǔ)句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語(yǔ)句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問(wèn)題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問(wèn)題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.4.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問(wèn)題,處理雙曲線離心率問(wèn)題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.5.D【解析】
①通過(guò)證明平面,證得;②通過(guò)證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)椋云矫?,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)椋云矫?,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.6.A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主要考查函數(shù)圖像的識(shí)別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.7.B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡(jiǎn),再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.8.B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?.C【解析】
由程序語(yǔ)言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過(guò)程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題10.A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.11.C【解析】從21開(kāi)始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.12.C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可。【詳解】“任取兩個(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是?!军c(diǎn)睛】本題主要考查古典概型的概率求法。14.【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點(diǎn),平移直線,當(dāng)直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故答案為:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查線性目標(biāo)函數(shù)的最值問(wèn)題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.15.【解析】
分類(lèi)討論,時(shí)不合題意;時(shí)求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡(jiǎn)得,構(gòu)造放縮函數(shù)對(duì)自變量再研究,可解,【詳解】令;當(dāng)時(shí),,不合題意;當(dāng)時(shí),,令,得或,所以在區(qū)間和上單調(diào)遞減.因?yàn)?,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時(shí),,當(dāng)時(shí),則.設(shè),則.當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點(diǎn)睛】本題考查不等式恒成立問(wèn)題.不等式恒成立問(wèn)題的求解思路:已知不等式(為實(shí)參數(shù))對(duì)任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類(lèi)問(wèn)題可以運(yùn)用分離參數(shù)法;如果無(wú)法分離參數(shù),可以考慮對(duì)參數(shù)或自變量進(jìn)行分類(lèi)討論求解,如果是二次不等式恒成立的問(wèn)題,可以考慮二次項(xiàng)系數(shù)與判別式的方法(,或,)求解.16.【解析】
因?yàn)?,所?因?yàn)椋?,又,所以,所?.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)或【解析】
(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點(diǎn)坐標(biāo)為,結(jié)合導(dǎo)數(shù)的幾何意義可得方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,進(jìn)而可知由唯一零點(diǎn),即可代入求得的值;(2)將解析式代入,結(jié)合零點(diǎn)定義化簡(jiǎn)并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個(gè)交點(diǎn);求得并令求得極值點(diǎn),列出表格判斷的單調(diào)性與極值,即可確定與有兩個(gè)交點(diǎn)時(shí)的取值范圍.【詳解】(1)依題意,,,設(shè)切點(diǎn)為,,故,故,則;令,,故當(dāng)時(shí),,當(dāng)時(shí),,故當(dāng)時(shí),函數(shù)有最小值,由于,故有唯一實(shí)數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線在有兩個(gè)交點(diǎn)”;由于.由,解得,.當(dāng)變化時(shí),與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,故?dāng)或時(shí),直線與曲線在上有兩個(gè)交點(diǎn),即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點(diǎn)的意義及綜合應(yīng)用,屬于難題.18.(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).19.(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因?yàn)闉榈闹芯€,所以,兩邊同時(shí)平方可得,故.因?yàn)?所以.所以的面積.【點(diǎn)睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問(wèn)題,同時(shí)也考查了向量在解三角形中的運(yùn)用,屬于中檔題.20.(1);(2).【解析】
(1)先求出角,進(jìn)而可得出,則①②中有且只有一個(gè)正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計(jì)算出和,計(jì)算出,可得出,進(jìn)而可求得的面積.【詳解】(1)因?yàn)?,所以,得,,,為鈍角,與矛盾,故①②中僅有一個(gè)正確,③正確.顯然,得.當(dāng)①③正確時(shí),由,得(無(wú)解);當(dāng)②③正確時(shí),由于,,得;(2)如圖,因?yàn)?,,則,則,.【點(diǎn)睛】本題考查解三角形綜合應(yīng)用,涉及三角形面積公式和余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.21.(1);(2)證明見(jiàn)解析;(3)是,理由見(jiàn)解析.【解析】
(1)根據(jù)兩個(gè)曲線的焦點(diǎn)相同,得到,再根據(jù)與的公共弦長(zhǎng)為得出,可求出和的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)用織物管理規(guī)范
- 2025屆安徽省部分省示范中學(xué)高考化學(xué)考前最后一卷預(yù)測(cè)卷含解析
- 心內(nèi)科危重病人護(hù)理常規(guī)
- 工廠環(huán)境安全主題
- 小學(xué)生生命生存生活教育
- 統(tǒng)編版(2024)語(yǔ)文一年級(jí)下冊(cè)第八單元綜合素質(zhì)測(cè)評(píng)B卷(含答案)
- 第二單元評(píng)估檢測(cè)題(單元測(cè)試)無(wú)答案六年級(jí)下冊(cè)數(shù)學(xué)冀教版
- 2025年弱粘煤項(xiàng)目合作計(jì)劃書(shū)
- 彈力小車(chē)課件
- 宿舍美甲店創(chuàng)業(yè)計(jì)劃書(shū)
- 企業(yè)廉潔風(fēng)險(xiǎn)防控課件教學(xué)
- 中醫(yī)護(hù)理三基練習(xí)題庫(kù)+答案
- 2025年護(hù)士三基考核試題及答案
- 七年級(jí)下冊(cè)2025春季歷史 教學(xué)設(shè)計(jì)《明朝對(duì)外關(guān)系》 學(xué)習(xí)資料
- 《設(shè)備管理標(biāo)準(zhǔn)化實(shí)施手冊(cè)》
- 湖南省長(zhǎng)沙市明達(dá)中學(xué)2024-2025學(xué)年九年級(jí)下學(xué)期入學(xué)考試英語(yǔ)試卷(含答案無(wú)聽(tīng)力原文及音頻)
- 汽車(chē)站建設(shè)項(xiàng)目可行性研究報(bào)告
- 《中國(guó)古典園林之美》課件
- 2024年09月上海2024交通銀行交銀金融科技校園招考筆試歷年參考題庫(kù)附帶答案詳解
- 2025年人教五四新版八年級(jí)數(shù)學(xué)上冊(cè)階段測(cè)試試卷
- 2025年廣西中馬欽州產(chǎn)業(yè)園區(qū)管委會(huì)招商服務(wù)有限公司招聘筆試參考題庫(kù)附帶答案詳解
評(píng)論
0/150
提交評(píng)論