陜西省漢中市部分高中2024-2025學(xué)年高三第二學(xué)期期末質(zhì)量測試數(shù)學(xué)試題含解析_第1頁
陜西省漢中市部分高中2024-2025學(xué)年高三第二學(xué)期期末質(zhì)量測試數(shù)學(xué)試題含解析_第2頁
陜西省漢中市部分高中2024-2025學(xué)年高三第二學(xué)期期末質(zhì)量測試數(shù)學(xué)試題含解析_第3頁
陜西省漢中市部分高中2024-2025學(xué)年高三第二學(xué)期期末質(zhì)量測試數(shù)學(xué)試題含解析_第4頁
陜西省漢中市部分高中2024-2025學(xué)年高三第二學(xué)期期末質(zhì)量測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省漢中市部分高中2024-2025學(xué)年高三第二學(xué)期期末質(zhì)量測試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.2.設(shè)是定義在實數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時,,則,,的大小關(guān)系是()A. B. C. D.3.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.4.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.5.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.6.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.37.設(shè)且,則下列不等式成立的是()A. B. C. D.8.已知三棱錐且平面,其外接球體積為()A. B. C. D.9.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如果,那么下列不等式成立的是()A. B.C. D.11.已知集合,則=()A. B. C. D.12.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標(biāo)原點)長為半徑的圓交于,兩點,則關(guān)于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定二、填空題:本題共4小題,每小題5分,共20分。13.已知各棱長都相等的直三棱柱(側(cè)棱與底面垂直的棱柱稱為直棱柱)所有頂點都在球的表面上.若球的表面積為則該三棱柱的側(cè)面積為___________.14.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.15.已知,則______,______.16.已知,則展開式的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.18.(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.19.(12分)已知函數(shù),曲線在點處的切線方程為求a,b的值;證明:.20.(12分)在開展學(xué)習(xí)強(qiáng)國的活動中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計劃從兩個學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.21.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.22.(10分)已知函數(shù)(為常數(shù))(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)2.C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對稱.

∵當(dāng)x≥1時,為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故選C3.A【解析】

根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結(jié)合四個選項可知,只有正確.故選:A.本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對空間想象能力要求較高,屬于中檔題.4.B【解析】

根據(jù)復(fù)數(shù)的除法法則計算,由共軛復(fù)數(shù)的概念寫出.【詳解】,,故選:B本題主要考查了復(fù)數(shù)的除法計算,共軛復(fù)數(shù)的概念,屬于容易題.5.D【解析】

先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.6.C【解析】

由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個數(shù),綜合①②③得解.【詳解】①當(dāng)時,,滿足題意,②當(dāng)時,,,,,故不恒成立,③當(dāng)時,設(shè),,令,得,,得,下面考查方程的解的個數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.7.A【解析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.8.A【解析】

由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進(jìn)而求解.【詳解】由題,因為,所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A本題考查三棱錐的外接球體積,考查空間想象能力.9.C【解析】所對應(yīng)的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復(fù)平面的概念,屬于簡單題.10.D【解析】

利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.11.D【解析】

先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.12.A【解析】

利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點的坐標(biāo)為.設(shè)直線的方程為,點,的坐標(biāo)分別為,.討論:當(dāng)時,;當(dāng)時,據(jù),得,所以,所以.本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

只要算出直三棱柱的棱長即可,在中,利用即可得到關(guān)于x的方程,解方程即可解決.【詳解】由已知,,解得,如圖所示,設(shè)底面等邊三角形中心為,直三棱柱的棱長為x,則,,故,即,解得,故三棱柱的側(cè)面積為.故答案為:.本題考查特殊柱體的外接球問題,考查學(xué)生的空間想象能力,是一道中檔題.14.【解析】

先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進(jìn)一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.本題考查正弦定理解三角形,考查學(xué)生的基本計算能力,要靈活運(yùn)用正弦定理公式及三角形面積公式,本題屬于中檔題.15.【解析】

利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進(jìn)而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.本題主要考查三角函數(shù)值的計算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應(yīng)用,難度不大.16.【解析】

先根據(jù)定積分求出的值,再用二項展開式公式即可求解.【詳解】因為所以的通項公式為當(dāng)時,當(dāng)時,故展開式中的系數(shù)為故答案為:此題考查定積分公式,二項展開式公式等知識點,屬于簡單題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)最小值為1.【解析】

(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時取等號,∴四邊形的面積的最小值為1.本小題主要考查動點軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計算,考查運(yùn)算求解能力,屬于中檔題.18.(1)證明見解析;(2)見解析;(3)存在,1.【解析】

(1),求出單調(diào)區(qū)間,進(jìn)而求出,即可證明結(jié)論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當(dāng)時,設(shè),且,只需求出在單調(diào)遞增時的取值范圍即可.【詳解】(1),,,當(dāng)時,,當(dāng)時,,∴,故.(2)由題知,,,①當(dāng)時,,所以在上單調(diào)遞減,沒有極值;②當(dāng)時,,得,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增.故在處取得極小值,無極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,,在恒成立,所以,當(dāng)時,,由(2)知,當(dāng)時,在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時,,由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時,設(shè),因為,所以,,即,所以在上單調(diào)遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計算能力,屬于較難題.19.(1);(2)見解析【解析】分析:第一問結(jié)合導(dǎo)數(shù)的幾何意義以及切點在切線上也在函數(shù)圖像上,從而建立關(guān)于的等量關(guān)系式,從而求得結(jié)果;第二問可以有兩種方法,一是將不等式轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,從而求得結(jié)果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運(yùn)算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設(shè)則只需證明,設(shè)則,在上單調(diào)遞增,,使得且當(dāng)時,,當(dāng)時,當(dāng)時,,單調(diào)遞減當(dāng)時,,單調(diào)遞增,由,得,,設(shè),,當(dāng)時,,在單調(diào)遞減,,因此(方法二)先證當(dāng)時,,即證設(shè),則,且,在單調(diào)遞增,在單調(diào)遞增,則當(dāng)時,(也可直接分析顯然成立)再證設(shè),則,令,得且當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.,即又,點睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的綜合問題,在求解的過程中,涉及到的知識點有導(dǎo)數(shù)的幾何意義,有關(guān)切線的問題,還有就是應(yīng)用導(dǎo)數(shù)證明不等式,可以構(gòu)造新函數(shù),轉(zhuǎn)化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.20.(1)28種;(2)分布見解析,.【解析】

(1)分這名女教師分別來自黨員學(xué)習(xí)組與非黨員學(xué)習(xí)組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學(xué)期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.本題主要考查組合數(shù)與組合公式及離散型隨機(jī)變量的期望和方差,相對不難,注意運(yùn)算的準(zhǔn)確性.21.(1)答案不唯一,具體見解析(2)證明見解析【解析】

(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論