河北省保定市第十三中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
河北省保定市第十三中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
河北省保定市第十三中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
河北省保定市第十三中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
河北省保定市第十三中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北省保定市第十三中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,平行四邊形ABCD的周長為12,∠A=60°,設邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關系的圖象大致是()A. B. C. D.2.2cos30°的值等于()A.1 B. C. D.23.天氣越來越熱,為防止流行病傳播,學校決定用420元購買某種牌子的消毒液,經(jīng)過還價,每瓶便宜0.5元,結果比用原價購買多買了20瓶,求原價每瓶多少元?設原價每瓶x元,則可列出方程為()A.-=20 B.-=20C.-=20 D.4.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y65.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.6.如圖,小剛從山腳A出發(fā),沿坡角為的山坡向上走了300米到達B點,則小剛上升了()A.米 B.米 C.米 D.米7.在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差8.如圖,將四根長度相等的細木條首尾相連,用釘子釘成四邊形,轉動這個四邊形,使它形狀改變,當,時,等于()A. B. C. D.9.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶310.如圖,在△ABC中,以點B為圓心,以BA長為半徑畫弧交邊BC于點D,連接AD.若∠B=40°,∠C=36°,則∠DAC的度數(shù)是()A.70° B.44° C.34° D.24°二、填空題(共7小題,每小題3分,滿分21分)11.將一個含45°角的三角板,如圖擺放在平面直角坐標系中,將其繞點順時針旋轉75°,點的對應點恰好落在軸上,若點的坐標為,則點的坐標為____________.12.寫出一個經(jīng)過點(1,2)的函數(shù)表達式_____.13.如圖,一艘輪船自西向東航行,航行到A處測得小島C位于北偏東60°方向上,繼續(xù)向東航行10海里到達點B處,測得小島C在輪船的北偏東15°方向上,此時輪船與小島C的距離為_________海里.(結果保留根號)14.如果實數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.15.如圖,把△ABC繞點C按順時針方向旋轉35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.16.墊球是排球隊常規(guī)訓練的重要項目之一.如圖所示的數(shù)據(jù)是運動員張華十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.則運動員張華測試成績的眾數(shù)是_____.17.如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點D,連接BD,則∠ABD=___________°.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:四邊形BFDE是平行四邊形.19.(5分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現(xiàn)公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.20.(8分)如圖,在中,點是的中點,點是線段的延長線上的一動點,連接,過點作的平行線,與線段的延長線交于點,連接、.求證:四邊形是平行四邊形.若,,則在點的運動過程中:①當______時,四邊形是矩形;②當______時,四邊形是菱形.21.(10分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結論).22.(10分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(12分)如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.填空:∠ABC=°,BC=;判斷△ABC與△DEF是否相似,并證明你的結論.24.(14分)如圖,在△ABC中,∠ACB=90°,點O是BC上一點.尺規(guī)作圖:作⊙O,使⊙O與AC、AB都相切.(不寫作法與證明,保留作圖痕跡)若⊙O與AB相切于點D,與BC的另一個交點為點E,連接CD、DE,求證:DB

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

過點B作BE⊥AD于E,構建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關系式,結合函數(shù)關系式找到對應的圖像.【詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【點睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關系式是解題的關鍵.2、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應用,熟記30°、45°、60°角的三角函數(shù)值是解題關鍵.3、C【解析】

關鍵描述語是:“結果比用原價多買了1瓶”;等量關系為:原價買的瓶數(shù)-實際價格買的瓶數(shù)=1.【詳解】原價買可買瓶,經(jīng)過還價,可買瓶.方程可表示為:﹣=1.故選C.【點睛】考查了由實際問題抽象出分式方程.列方程解應用題的關鍵步驟在于找相等關系.本題要注意討價前后商品的單價的變化.4、D【解析】

根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質,對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.5、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.6、A【解析】

利用銳角三角函數(shù)關系即可求出小剛上升了的高度.【詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【點睛】此題主要考查了解直角三角形的應用,根據(jù)題意構造直角三角形,正確選擇銳角三角函數(shù)得出AB,BO的關系是解題關鍵.7、B【解析】

解:11人成績的中位數(shù)是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.故選B.【點睛】本題考查統(tǒng)計量的選擇,掌握中位數(shù)的意義是本題的解題關鍵.8、B【解析】

首先連接AC,由將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,AB=1,,易得△ABC是等邊三角形,即可得到答案.【詳解】連接AC,

∵將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,

∴AB=BC,

∵,

∴△ABC是等邊三角形,

∴AC=AB=1.

故選:B.【點睛】本題考點:菱形的性質.9、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質:相似三角形的面積之比等于對應邊之比的平方,進而將求面積比的問題轉化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關系(銳角三角形函數(shù))即可得出對應邊之比,進而得到面積比.10、C【解析】

易得△ABD為等腰三角形,根據(jù)頂角可算出底角,再用三角形外角性質可求出∠DAC【詳解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故選C.【點睛】本題考查三角形的角度計算,熟練掌握三角形外角性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標.【詳解】解:∵∠ACB=45°,∠BCB′=75°,

∴∠ACB′=120°,

∴∠ACO=60°,

∴∠OAC=30°,

∴AC=2OC,

∵點C的坐標為(1,0),

∴OC=1,

∴AC=2OC=2,

∵△ABC是等腰直角三角形,∴B′點的坐標為【點睛】此題主要考查了旋轉的性質及坐標與圖形變換,同時也利用了直角三角形性質,首先利用直角三角形的性質得到有關線段的長度,即可解決問題.12、y=x+1(答案不唯一)【解析】

本題屬于結論開放型題型,可以將函數(shù)的表達式設計為一次函數(shù)、反比例函數(shù)、二次函數(shù)的表達式.答案不唯一.【詳解】解:所求函數(shù)表達式只要圖象經(jīng)過點(1,2)即可,如y=2x,y=x+1,…答案不唯一.

故答案可以是:y=x+1(答案不唯一).【點睛】本題考查函數(shù),解題的關鍵是清楚幾種函數(shù)的一般式.13、5【解析】

如圖,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性質求出BC即可.【詳解】如圖,作BH⊥AC于H.

在Rt△ABH中,∵AB=10海里,∠BAH=30°,

∴∠ABH=60°,BH=AB=5(海里),

在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),

∴BH=CH=5海里,

∴CB=5(海里).

故答案為:5.【點睛】本題考查了解直角三角形的應用-方向角問題,解題的關鍵是學會添加常用輔助線,構造特殊三角形解決問題.14、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.15、55.【解析】

試題分析:∵把△ABC繞點C按順時針方向旋轉35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉的性質;2.直角三角形兩銳角的關系.16、1【解析】

根據(jù)眾數(shù)定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)可得答案.【詳解】運動員張華測試成績的眾數(shù)是1.故答案為1.【點睛】本題主要考查了眾數(shù),關鍵是掌握眾數(shù)定義.17、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,

∴∠A=∠C=1°,

∵AB的垂直平分線DE交AC于點D,

∴AD=BD,

∴∠ABD=∠A=1°;

故答案是1.三、解答題(共7小題,滿分69分)18、證明見解析【解析】

∵四邊形ABCD是平行四邊形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四邊形BFDE是平行四邊形.19、(1);(2)【解析】

(1)根據(jù)概率公式計算可得;(2)畫樹狀圖列出所有等可能結果,從中找到符合要求的結果數(shù),利用概率公式計算可得.【詳解】解:(1)由于共有A、B、W三個座位,∴甲選擇座位W的概率為,故答案為:;(2)畫樹狀圖如下:由圖可知,共有6種等可能結果,其中甲、乙選擇相鄰的座位有兩種,所以P(甲乙相鄰)==.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)、證明過程見解析;(2)、①、2;②、1.【解析】

(1)、首先證明△BEF和△DCF全等,從而得出DC=BE,結合DC和AB平行得出平行四邊形;(2)、①、根據(jù)矩形得出∠CEB=90°,結合∠ABC=120°得出∠CBE=60°,根據(jù)直角三角形的性質得出答案;②、根據(jù)菱形的性質以及∠ABC=120°得出△CBE是等邊三角形,從而得出答案.【詳解】(1)、證明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵點F是BC的中點,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,F(xiàn)C=BF,∴△EBF≌△DCF(AAS),∴DC=BE,∴四邊形BECD是平行四邊形;(2)、①BE=2;∵當四邊形BECD是矩形時,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,②BE=1,∵四邊形BECD是菱形時,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等邊三角形,∴BE=BC=1.【點睛】本題主要考查的是平行四邊形的性質以及矩形、菱形的判定定理,屬于中等難度的題型.理解平行四邊形的判定定理以及矩形和菱形的性質是解決這個問題的關鍵.21、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點:四邊形綜合題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論