




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
貴州省黔南州名校2024屆中考三模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算2.下列調(diào)查中,最適合采用全面調(diào)查(普查)的是()A.對我市中學生每周課外閱讀時間情況的調(diào)查B.對我市市民知曉“禮讓行人”交通新規(guī)情況的調(diào)查C.對我市中學生觀看電影《厲害了,我的國》情況的調(diào)查D.對我國首艘國產(chǎn)航母002型各零部件質量情況的調(diào)查3.sin45°的值等于()A. B.1 C. D.4.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.5.在以下三個圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖36.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.7.如圖,3個形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點稱為格點.已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若也在格點上,且∠AED=∠ACD,則∠AEC度數(shù)為()A.75° B.60° C.45° D.30°8.下列計算正確的是()A.a(chǎn)2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b9.若關于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一個根為1,則m的值為A.1 B.3 C.0 D.1或310.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解______.12.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.13.如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=的圖象交于A(﹣1,2),B(1,﹣2)兩點,若y1>y2,則x的取值范圍是_____.14.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.15.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.16.同一個圓的內(nèi)接正方形和正三角形的邊心距的比為_____.三、解答題(共8題,共72分)17.(8分)2013年6月,某中學結合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:在這次抽樣調(diào)查中,一共調(diào)查了多少名學生?請把折線統(tǒng)計圖(圖1)補充完整;求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數(shù);如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數(shù).18.(8分)若兩個不重合的二次函數(shù)圖象關于軸對稱,則稱這兩個二次函數(shù)為“關于軸對稱的二次函數(shù)”.(1)請寫出兩個“關于軸對稱的二次函數(shù)”;(2)已知兩個二次函數(shù)和是“關于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).19.(8分)如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現(xiàn)在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數(shù)據(jù):≈1.414,≈1.732)20.(8分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7521.(8分)小明對,,,四個中小型超市的女工人數(shù)進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計表超市女工人數(shù)占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現(xiàn)在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.22.(10分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.23.(12分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c224.已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當三角板CPQ繞點C旋轉到點A、P、Q在同一直線時,求AP的長;設射線AP與射線BQ相交于點E,連接EC,寫出旋轉過程中EP、EQ、EC之間的數(shù)量關系.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
有旋轉的性質得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質:旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.2、D【解析】
由普查得到的調(diào)查結果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結果比較近似.由此,對各選項進行辨析即可.【詳解】A、對我市中學生每周課外閱讀時間情況的調(diào)查,人數(shù)眾多,意義不大,應采用抽樣調(diào)查,故此選項錯誤;B、對我市市民知曉“禮讓行人”交通新規(guī)情況的調(diào)查,人數(shù)眾多,意義不大,應采用抽樣調(diào)查,故此選項錯誤;C、對我市中學生觀看電影《厲害了,我的國》情況的調(diào)查,人數(shù)眾多,意義不大,應采用抽樣調(diào)查,故此選項錯誤;D、對我國首艘國產(chǎn)航母002型各零部件質量情況的調(diào)查,意義重大,應采用普查,故此選項正確;故選D.【點睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關重大的調(diào)查往往選用普查.3、D【解析】
根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數(shù)的應用,能熟記特殊角的三角函數(shù)值是解此題的關鍵,難度適中.4、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.5、C【解析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導得出AD是角平分線.【詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【點睛】本題考查了尺規(guī)作圖,三角形全等的判定與性質等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質是解題的關鍵.6、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.7、B【解析】
將圓補充完整,利用圓周角定理找出點E的位置,再根據(jù)菱形的性質即可得出△CME為等邊三角形,進而即可得出∠AEC的值.【詳解】將圓補充完整,找出點E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標點E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【點睛】本題考查了菱形的性質、等邊三角形的判定依據(jù)圓周角定理,根據(jù)圓周角定理結合圖形找出點E的位置是解題的關鍵.8、D【解析】
各項計算得到結果,即可作出判斷.【詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.9、B【解析】
直接把x=1代入已知方程即可得到關于m的方程,解方程即可求出m的值.【詳解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一個根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但當m=1時方程的二次項系數(shù)為0,∴m=3.故答案選B.【點睛】本題考查了一元二次方程的解,解題的關鍵是熟練的掌握一元二次方程的運算.10、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(3a+1)【解析】3a2+a=a(3a+1),故答案為a(3a+1).12、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質,掌握位似圖形與相似圖形的關系、相似多邊形的性質是解題的關鍵.13、x<﹣2或0<x<2【解析】
仔細觀察圖像,圖像在上面的函數(shù)值大,圖像在下面的函數(shù)值小,當y2>y2,即正比例函數(shù)的圖像在上,反比例函數(shù)的圖像在下時,根據(jù)圖像寫出x的取值范圍即可.【詳解】解:如圖,結合圖象可得:①當x<﹣2時,y2>y2;②當﹣2<x<0時,y2<y2;③當0<x<2時,y2>y2;④當x>2時,y2<y2.綜上所述:若y2>y2,則x的取值范圍是x<﹣2或0<x<2.故答案為x<﹣2或0<x<2.【點睛】本題考查了圖像法解不等式,解題的關鍵是仔細觀察圖像,全面寫出符合條件的x的取值范圍.14、540°【解析】
根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和15、【解析】
一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運用,解決本題的關鍵是要熟練掌握概率的定義和求概率的公式.16、【解析】
先畫出同一個圓的內(nèi)接正方形和內(nèi)接正三角形,設⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【詳解】設⊙O的半徑為r,⊙O的內(nèi)接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設⊙O的內(nèi)接正△EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【點睛】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質、正方形的性質等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.三、解答題(共8題,共72分)17、(1)一共調(diào)查了300名學生.(2)(3)體育部分所對應的圓心角的度數(shù)為48°.(4)1800名學生中估計最喜愛科普類書籍的學生人數(shù)為1.【解析】
(1)用文學的人數(shù)除以所占的百分比計算即可得解.(2)根據(jù)所占的百分比求出藝術和其它的人數(shù),然后補全折線圖即可.(3)用體育所占的百分比乘以360°,計算即可得解.(4)用總人數(shù)乘以科普所占的百分比,計算即可得解.【詳解】解:(1)∵90÷30%=300(名),∴一共調(diào)查了300名學生.(2)藝術的人數(shù):300×20%=60名,其它的人數(shù):300×10%=30名.補全折線圖如下:(3)體育部分所對應的圓心角的度數(shù)為:×360°=48°.(4)∵1800×=1(名),∴1800名學生中估計最喜愛科普類書籍的學生人數(shù)為1.18、(1)任意寫出兩個符合題意的答案,如:;(2),頂點坐標為【解析】
(1)根據(jù)關于y軸對稱的二次函數(shù)的特點,只要兩個函數(shù)的頂點坐標根據(jù)y軸對稱即可;
(2)根據(jù)函數(shù)的特點得出a=m,--=0,,進一步得出m=a,n=-b,p=c,從而得到y(tǒng)1+y2=2ax2+2c,根據(jù)關系式即可得到頂點坐標.【詳解】解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“關于y軸對稱的二次函數(shù)”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
則y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函數(shù)y1+y2的頂點坐標為(0,2c).【點睛】本題考查了二次函數(shù)的圖象與幾何變換,得出變換的規(guī)律是解題的關鍵.19、33層.【解析】
根據(jù)含30度的直角三角形三邊的關系和等腰直角三角形的性質得到BD和CE的長,二者的和乘以100后除以20即可確定臺階的數(shù).【詳解】解:在Rt△ABD中,BD=AB?sin45°=3m,在Rt△BEC中,EC=BC=3m,∴BD+CE=3+3,∵改造后每層臺階的高為22cm,∴改造后的臺階有(3+3)×100÷22≈33(個)答:改造后的臺階有33個.【點睛】本題考查了坡度的概念:斜坡的坡度等于斜坡的鉛直高度與對應的水平距離的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三邊的關系和等腰直角三角形的性質.20、景點A與B之間的距離大約為280米【解析】
由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點A與B之間的距離大約為280米.【點睛】本題考查了解直角三角形的應用-方向角問題,對于解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.21、(1)32(人),25(人);(2);(3)乙同學,見解析.【解析】
(1)用A超市有女工人數(shù)除以女工人數(shù)占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數(shù),進一步得到四個中小型超市的女工人數(shù)比,從而求得B超市有女工多少人;
(2)先求出C超市有女工人數(shù),進一步得到四個中小型超市共有女工人數(shù),再根據(jù)概率的定義即可求解;
(3)先求出D超市有女工人數(shù)、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數(shù)、共有員工多少人,再根據(jù)概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數(shù)的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統(tǒng)計表與扇形統(tǒng)計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)-7;(2),.【解析】
(1)原式第一項利用算術平方根定義計算,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結果;
(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,約分得到最簡結果,利用非負數(shù)的性質求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點睛】本題考查了實數(shù)的運算、非負數(shù)的性質與分式的化簡求值,解題的關鍵是熟練的掌握實數(shù)的運算、非負數(shù)的性質與分式的化簡求值的運用.23、見解析.【解析】
首先連結BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆明鐵道職業(yè)技術學院《自然科學》2023-2024學年第二學期期末試卷
- 浙江省杭州市建德市2024-2025學年三下數(shù)學期末統(tǒng)考模擬試題含解析
- 湖北醫(yī)藥學院《項目前分析和項目分析》2023-2024學年第二學期期末試卷
- 武漢文理學院《生物信息學分析實踐》2023-2024學年第二學期期末試卷
- 寧夏職業(yè)技術學院《遙感與信息技術》2023-2024學年第二學期期末試卷
- 遼寧軌道交通職業(yè)學院《文學經(jīng)典與語文教學》2023-2024學年第二學期期末試卷
- 樂山職業(yè)技術學院《醫(yī)用近代儀器分析》2023-2024學年第二學期期末試卷
- 攀枝花學院《廣播電視經(jīng)營與管理》2023-2024學年第二學期期末試卷
- 江西省景德鎮(zhèn)市2025屆初三“停課不停學”階段性檢測試題生物試題含解析
- 蘭州信息科技學院《建設監(jiān)理》2023-2024學年第二學期期末試卷
- 危險性較大的分部分項工程專項施工方案嚴重缺陷清單(試行)
- 公務接待考試題及答案
- 2025年上半年第二次商務部國際貿(mào)易經(jīng)濟合作研究院招聘7人重點基礎提升(共500題)附帶答案詳解
- 2025年危險化學品安全生產(chǎn)培訓教材試題庫
- 羽毛球賽事組織與管理的
- 小學生戰(zhàn)斗機介紹課件圖片
- 第一講緒論精神病學講解
- 人教版 七年級 下冊 語文 第四單元《青春之光》課件
- 超高性能混凝土與鋼筋的粘結滑移本構關系
- 某紙業(yè)公司年產(chǎn)9.8萬噸DMC清潔制漿項目可行性研究報告
- 二零二五版產(chǎn)品推介會會務策劃與執(zhí)行協(xié)議3篇
評論
0/150
提交評論