2025屆揚(yáng)州市重點(diǎn)中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第1頁(yè)
2025屆揚(yáng)州市重點(diǎn)中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第2頁(yè)
2025屆揚(yáng)州市重點(diǎn)中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第3頁(yè)
2025屆揚(yáng)州市重點(diǎn)中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第4頁(yè)
2025屆揚(yáng)州市重點(diǎn)中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆揚(yáng)州市重點(diǎn)中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿(mǎn)足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.192.已知橢圓的中心為原點(diǎn),為的左焦點(diǎn),為上一點(diǎn),滿(mǎn)足且,則橢圓的方程為()A. B. C. D.3.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.74.已知函數(shù)的圖象與直線的相鄰交點(diǎn)間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.5.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.設(shè)復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.7.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱(chēng)為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.8.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)9.已知的內(nèi)角的對(duì)邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.10.已知函數(shù),則的最小值為()A. B. C. D.11.已知函數(shù).若存在實(shí)數(shù),且,使得,則實(shí)數(shù)a的取值范圍為()A. B. C. D.12.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說(shuō)法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng)C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱(chēng)二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為_(kāi)_______.14.設(shè)實(shí)數(shù),滿(mǎn)足,則的最大值是______.15.在的二項(xiàng)展開(kāi)式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則該二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)等于_____.16.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,是的中點(diǎn),.(Ⅰ)證明:;(Ⅱ)若為上的動(dòng)點(diǎn),求與平面所成最大角的正切值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無(wú)解,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù)與的圖象關(guān)于直線對(duì)稱(chēng).(為自然對(duì)數(shù)的底數(shù))(1)若的圖象在點(diǎn)處的切線經(jīng)過(guò)點(diǎn),求的值;(2)若不等式恒成立,求正整數(shù)的最小值.20.(12分)已知橢圓的離心率為,且過(guò)點(diǎn),點(diǎn)在第一象限,為左頂點(diǎn),為下頂點(diǎn),交軸于點(diǎn),交軸于點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點(diǎn)的坐標(biāo).21.(12分)已知橢圓,直線不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過(guò)點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說(shuō)明理由.22.(10分)隨著小汽車(chē)的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報(bào)名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過(guò)四個(gè)科目的考試,其中科目二為場(chǎng)地考試.在一次報(bào)名中,每個(gè)學(xué)員有5次參加科目二考試的機(jī)會(huì)(這5次考試機(jī)會(huì)中任何一次通過(guò)考試,就算順利通過(guò),即進(jìn)入下一科目考試;若5次都沒(méi)有通過(guò),則需重新報(bào)名),其中前2次參加科目二考試免費(fèi),若前2次都沒(méi)有通過(guò),則以后每次參加科目二考試都需要交200元的補(bǔ)考費(fèi).某駕校對(duì)以往2000個(gè)學(xué)員第1次參加科目二考試進(jìn)行了統(tǒng)計(jì),得到下表:考試情況男學(xué)員女學(xué)員第1次考科目二人數(shù)1200800第1次通過(guò)科目二人數(shù)960600第1次未通過(guò)科目二人數(shù)240200若以上表得到的男、女學(xué)員第1次通過(guò)科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過(guò)科目二考試的概率,且每人每次是否通過(guò)科目二考試相互獨(dú)立.現(xiàn)有一對(duì)夫妻同時(shí)在此駕校報(bào)名參加了駕駛證考試,在本次報(bào)名中,若這對(duì)夫妻參加科目二考試的原則為:通過(guò)科目二考試或者用完所有機(jī)會(huì)為止.(1)求這對(duì)夫妻在本次報(bào)名中參加科目二考試都不需要交補(bǔ)考費(fèi)的概率;(2)若這對(duì)夫妻前2次參加科目二考試均沒(méi)有通過(guò),記這對(duì)夫妻在本次報(bào)名中參加科目二考試產(chǎn)生的補(bǔ)考費(fèi)用之和為元,求的分布列與數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

計(jì)算,故,解得答案.【詳解】當(dāng)時(shí),,即,且.故,,故.故選:.【點(diǎn)睛】本題考查了數(shù)列的相關(guān)計(jì)算,意在考查學(xué)生的計(jì)算能力和對(duì)于數(shù)列公式方法的綜合應(yīng)用.2.B【解析】由題意可得c=,設(shè)右焦點(diǎn)為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點(diǎn)睛:橢圓的定義:到兩定點(diǎn)距離之和為常數(shù)的點(diǎn)的軌跡,當(dāng)和大于兩定點(diǎn)間的距離時(shí),軌跡是橢圓,當(dāng)和等于兩定點(diǎn)間的距離時(shí),軌跡是線段(兩定點(diǎn)間的連線段),當(dāng)和小于兩定點(diǎn)間的距離時(shí),軌跡不存在.3.B【解析】

根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.4.A【解析】

由題知,利用求出,再根據(jù)題給定義,化簡(jiǎn)求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點(diǎn)間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點(diǎn)睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對(duì)新定義的理解.5.C【解析】

化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.6.D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【詳解】.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.7.B【解析】

初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿(mǎn)足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.8.A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類(lèi)討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過(guò)程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過(guò)程得以?xún)?yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問(wèn)題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.9.C【解析】

由,化簡(jiǎn)得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼?,所以,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡(jiǎn),余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.10.C【解析】

利用三角恒等變換化簡(jiǎn)三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡(jiǎn)三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.11.D【解析】

首先對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號(hào)分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿(mǎn)足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點(diǎn)睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問(wèn)題,涉及到的知識(shí)點(diǎn)有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫(huà)出圖象數(shù)形結(jié)合,屬于較難題目.12.B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱(chēng)中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng).故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.14.1【解析】

根據(jù)目標(biāo)函數(shù)的解析式形式,分析目標(biāo)函數(shù)的幾何意義,然后判斷求出目標(biāo)函數(shù)取得最優(yōu)解的點(diǎn)的坐標(biāo),即可求解.【詳解】作出實(shí)數(shù),滿(mǎn)足表示的平面區(qū)域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時(shí)最大為1,故答案為:1.【點(diǎn)睛】本題主要考查線性規(guī)劃知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想.15.1【解析】

由題意可得,再利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,求得二項(xiàng)展開(kāi)式常數(shù)項(xiàng)的值.【詳解】的二項(xiàng)展開(kāi)式的中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,,通項(xiàng)公式為,令,求得,可得二項(xiàng)展開(kāi)式常數(shù)項(xiàng)等于,故答案為1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.16..【解析】

由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)見(jiàn)解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長(zhǎng)為2的菱形,平面,,易證平面,可得;(Ⅱ)連結(jié),由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點(diǎn),∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結(jié),由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當(dāng)且僅當(dāng)最短,即時(shí)最大,依題意,此時(shí),在中,,∴,,∴與平面所成最大角的正切值為.考點(diǎn):1.線線垂直證明;2.求線面角.18.(1);(2).【解析】

(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當(dāng)時(shí),,此時(shí)不等式無(wú)解;當(dāng)時(shí),,由得;當(dāng)時(shí),,由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當(dāng)時(shí),;當(dāng)時(shí),,所以當(dāng)時(shí),,由得或,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法、不等式恒成立問(wèn)題,考查學(xué)生分類(lèi)討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.19.(1)e;(2)2.【解析】

(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點(diǎn)處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對(duì)稱(chēng),所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點(diǎn),,又,當(dāng)時(shí),,曲線在點(diǎn)處的切線為,即,代入點(diǎn),得,即,構(gòu)造函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,且,當(dāng)時(shí),單調(diào)遞增,而,故存在唯一的實(shí)數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時(shí),;當(dāng)時(shí),,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因?yàn)?,,又因?yàn)樵谑菧p函數(shù).所以當(dāng)時(shí),.所以正整數(shù)的最小值為2.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問(wèn)題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計(jì)算能力.20.(1);(2)【解析】

(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點(diǎn),坐標(biāo),設(shè)直線的方程為,易知,可得點(diǎn)的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進(jìn)而由三點(diǎn)共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點(diǎn)的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點(diǎn),,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點(diǎn)的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)三點(diǎn)共線,所以,即,所以,所以.因?yàn)椋?,即,所以,解得,又,所以符合題意,計(jì)算可得,,故點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于難題.21.(Ⅰ)詳見(jiàn)解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿(mǎn)足,的條件就說(shuō)明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論