




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
GTC2025:
REDEFININGAI’S
COMPUTATIONALHORIZONWITHTOKENECONOMY
ABiresearch?
THETECHINTELLlGENCEEXPERTSSM
NVIDIA,sGPUTechnoIogyConference(GTC2025)markedawatershedmoment,within-personattendancesurgingto25,000attendeesrepresenting800globalcompanies—upfrom16,000thepreviousyear—whilevirtualparticipationheldsteadyatapproximately
300,000.Theexhibitionfloorexpandedtonearly400companies,withnotablegrowthin
thestartuppavilion.TheevidentexcitementthroughouttheeventevokedmemoriesoftheearlyMobileWorldCongressgatheringsofthe2000sorMicrosoft’sProfessionalDevelopersConferencesintheirmid-2000sheyday.
JensenHuang’skeynotearticulatedaparadigmshifttranscendingMoore’sLaw,presentingacomputationalarchitecturevisionoperatingatunprecedentedscaletosupportnext-gen-erationArtificialIntelligence(AI)frameworks,includingagenticsystems.Despiteitstechnicalcomplexity,themessagewasclear:wearewitnessingafundamentaltransitionfromgeneralpurposetoacceleratedcomputing,drivenbyexponentialAIdemand.
ThistransformationredefinesAIcomputationalefficiencyaroundqualitytokengeneration—thefoundationofGenerativeArtificialIntelligence(GenAI)andAgenticAIsystems.Thenewparadigmintegratesthreecriticalelements:rawGraphicsProcessingUnit(GPU)perfor-
mance,sophisticatedGPU-GPUinterconnectcommunications,andoptimizedstorage-GPUinteractions,allenhancedbyworkload-specificlibraries(CUDA-X)tailoredtotargetedver-
ticalsandspecificusecases.WhilecompetitorsremainfixatedonbenchmarkingindividualchipsusingtraditionalmetricslikeTrillionsofOperationsPerSecond(TOPS)orFloating
PointOperationsPerSecond(FLOPS),NVIDIAhasshiftedtheevaluationparadigmfromdataprocessingpipestotokengenerationefficiency—measuringperformancebythequalityandquantityoftokensproducedpersecond,whilereducingthecostandpowerconsumptionofeachtokengeneratedbythesystem.TrueAIcomputationalperformancenowreflectshowtokengenerationscaleswithadditionalGPUsthroughhardwareinnovationandsoftware
optimization.
Followingthisstrategicvision,HuangunveiledtheBlackwellUltrachip,deliveringa50%per-formanceincreaseoveritspredecessor,beforerevealinganambitiousroadmapfeaturing
theforthcomingVeraRubinandRubinUltrachips,andrelatedsystemsslatedfor2026and2027—thelatterpromisingastaggering14Xperformanceleap.Thistransparentroadmap
demonstratesNVIDIA’sconfidence,whileprovidingecosystempartnerswithunprecedent-edstrategicvisibility.ForOriginalEquipmentManufacturers(OEMs),softwaredevelopers,
andendusers,thisclarityenablesstrategicalignment,resourceallocationoptimization,andacceleratedplatformadoption.Forcompetitors,itsimultaneouslyestablishesanintimidatinginnovationbenchmark,whileexposingNVIDIAtoexecutionrisksthatrivalsmightexploit.
Thisstrategictransparency,whilefosteringdeeperindustrycollaboration,alsoamplifiescompetitivepressuresandexecutionstakes—particularlyamidgeopoliticaluncertaintiessurroundingsovereignAIinitiatives,manufacturingshifts,andevolvingregulatoryland-scapes.
Inanutshell,GTC2025mayberememberedasreshapingthevisionofcomputing—redefin-ingitthroughtokengenerationefficiency,ratherthanfasterprocessingpipelinestypicaloftraditionalsequentialcomputing.Throughthisvision,NVIDIAestablishesitselfasthefounda-tionoftheAIeconomy.Organizationsshouldrecognizethisshifttoacceleratedcomputingasrevolutionary,necessitatingstrategicrealignmentoftechnologyroadmapsandinvest-
mentpriorities.
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY2
BusinessesmustevaluateAIinfrastructurebasedontokengenerationcapabilities.AscomputationaldemandsforAgenticAIscaleexponentiallybeyondinitialprojections,organizationswillneedtoadoptmoresophisticatedforecastingmethodologies,acknowledgingthatcurrentestimateslikelyunderstatefuturerequirements.Withthisinmind,ABIResearchiscurrentlydevelopingcomprehensiveforecaststhatincludevaluecreationmetricsforAgenticAIsystemsandassociatedCapitalExpenditure(CAPEX)assessmentstodetermineReturnonInvestment(ROI)tippingpoints.
Tofullyleveragethismomentum,ecosystempartnersmuststrategicallyaligntheirinvestments,inno-vationpipelines,andsupplychainplanningwiththisnewtransformationwherequalitytokengenera-tionbecomescentraltotheAIfabric.NVIDIAcompetitorsshouldrecognizethistransformationasbothachallengeandcatalyst,emphasizingthenecessityofacceleratingtheirowninnovationcyclesand
strategicpartnerships.
However,industryplayersmustalsocarefullyanalyzeinherentrisks,chiefamongthemtheover-de-pendenceonasinglevendorecosystem,potentialexecutionfailuresagainstNVIDIA’sambitiousroad-map,escalatinginfrastructurecosts,andthestrategicvulnerabilityofbettingtooheavilyonspecific
AIarchitecturalapproachessuchasAgenticAIbeforethemarketfullymatures.Organizationsshouldproactivelyadoptriskmitigationstrategies,includingdiversifiedsupplychains,strategicpartnerships,scenarioplanning,andadaptableoperationalframeworks,toremainresilientamidthesedynamic
marketconditions.
MalikSaadi
VicePresident
MalikKamal-Saadiishead oftheStrategicTechnology GroupatABIResearch focusingontransformative technologiesandinnovation acrossTelecommunicationsandConnectivityTechnologies, EnterpriseITandOTTech-nologies,Cloud,Edge,andDis- tributedComputing,ArtificialIntelligence,DataWarehouses,RoboticsandAutomation,and otheradjacenttechnologies. Inhisrole,MalikleadsABI Research’sthoughtleader- ship,consultancyservices, syndicatedservices,strategicpositioning,marketforecasts, competitiveassessments,andmarketanalysis.
NVIDIADYNAMO—REVOLUTIONIZINGTOKENGENERATION,BUTWITHIMPLEMENTATIONCHALLENGES
AtGTC2025,NVIDIAunveiledDynamo,agroundbreakingopen-sourcedistributedinferenceframeworkdesignedtodramaticallyenhancetokengenerationefficiency—thenewbench-markforAIcomputationalperformance.Thisinnovationdirectlyaddressestheescalating
computationaldemandsofAgenticAIsystemsbyoptimizinglarge-scaleGPUdeploymentsformaximumtokenthroughput.Operatingasahigher-levelabstractionaboveCUDA-Xli-
braries,DynamoextendstheircapabilitiesfromindividualGPUoptimizationtosophisticatedclustermanagementacrossdistributedenvironments.
Dynamo’sarchitectureintroducesthreetransformativeoptimizations:disaggregatedinfer-
ence,hierarchicalKVcachemanagement,andintelligentcacherouting.Bysplittinginferenceintoseparateprefill(calculatingKVpairsfrominput)anddecode(generatingoutputtokens)phasesoperatingondedicatedGPUresources,Dynamosignificantlyincreasesthroughput—withpreliminarydatashowingmodelslikeLlama70Bachievingovertwicetheperformanceusingdisaggregationalone.TheframeworkemploysasophisticatedhierarchicalKVcache
systemthatoffloadscachesfromexpensiveGPUHighBandwidthMemory(HBM)tomore
economicalhostRandomAccessMemory(RAM)orNon-VolatileMemoryExpress(NVMe)
storage,whileitsintelligentroutertrackscachelocationsanddirectsqueriestoGPUsalreadycontainingrelevantdata,dramaticallyreducingredundantcomputations.
Theseinnovationsproveparticularlyvaluableforspecificusecasesrequiringlargecontextwindows,suchascomplexchatbotinteractions,deepresearchapplications,andcoding
tasksinvolvingextensiverepositories.Dynamonotonlyoptimizescurrentworkloads,butdy-namicallyadaptsGPUrolesbetweenprefillanddecodephasesbasedonreal-timedemand,ensuringresourcesarecontinuouslyalignedwithactualneeds.
3
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
HuanggivespresentationonCUDA-X
ThebusinessvalueofDynamoemergeswhenexaminingitsimpactoninferenceefficiencyandre-
sourceutilization.DynamotargetsinferenceefficiencythroughoptimalGPUutilization,minimized
redundantcomputation,intelligentcaching,anddynamicresourceallocation.ThismeansthatusingDynamohelpsimprovetheeconomicsoflarge-scaleinferenceworkloads,particularlyforapplicationsrequiringextensivecontexthandling.AscomputationaldemandsforAIcontinuetogrow,Dynamo
providesorganizationswithaframeworkthatmakestokengenerationmoreeconomical,efficient,andenvironmentallysustainableatindustryscale.
Beyondcostreduction,Dynamoenablesorganizationstosignificantlyenhanceservicequalitythroughimprovedthroughputandreducedlatency,supportingmoreconcurrentuserswithexistinginfrastruc-ture.ThisscalabilityadvantagebecomesparticularlycriticalasAIadoptiongrowsexponentially—allow-ingbusinessestoaccommodateincreasingdemandwithoutproportionalinfrastructureexpansion.ForAI-as-a-Serviceproviders,thisdirectlyimpactsrevenuepotentialandcompetitivepositioning.Addition-ally,byextendingthepracticalusabilityoflargecontextwindowswithoutprohibitivecosts,Dynamo
enablesentirelynewclassesofAIapplicationsthatwerepreviouslyeconomicallyunfeasible,creatingopportunitiesforproductdifferentiationandnewmarketentry.AscomputationaldemandsforAgenticAIcontinuetogrowexponentiallybeyondinitialprojections,Dynamo’soptimizationapproachprovidesacrucialpathwayforsustainablescaling—helpingorganizationsmaximizereturnonAIinvestments,
whileminimizingoperationalcostsandenvironmentalimpact.
Despiteitspromisingbenefits,implementingDynamopresentssubstantialchallenges.Theframework’sdistributednatureintroducescomplexityinorchestrationandresourcemanagementacrossmultiplenodes.Ensuringoptimalhierarchicalcachemanagementwithoutlatencypenalties,balancingcompet-ingfactorsoflowlatencyandhighthroughput,andaccommodatingheterogeneousworkloadsrequiresophisticatedreal-timedecision-making.Organizationsmustensuresufficienthigh-performance
networking,GPUresources,andfaststoragesolutions,whileaddressingdataconsistencyconcerns
indynamicmulti-nodeenvironments.Additionally,theinitialinfrastructureinvestmentandscarcityofspecializedexpertiseindistributedsystems,GPUarchitecture,andAIinferenceoptimizationmaypres-entbarriers,particularlyforsmallerorganizations.
4
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
Nevertheless,DynamoexemplifiesNVIDIA’sstrategicshifttowardopeninnovationinsoftwareto
complementitshardwareleadership,withsourcecodeavailableonGitHubforcommunitycontribu-tionandadaptation.ThisframeworkdirectlysupportsNVIDIA’svisionofredefiningcomputingaroundtokengenerationefficiency,dramaticallyreducingthecostandpowerconsumptionrequiredforeachhigh-qualitytoken—essentialforscalable,economical,andenvironmentally-friendlyAIinferenceas
computationaldemandscontinuescalingexponentiallybeyondinitialprojections.
EXPANDINGDGXPORTFOLIO:FROMEDGETOENTERPRISE
AtGTC2025,NVIDIAintroducedanewlineinitsDGXfamily,AIsupercomputingsolutionsdesigned
specificallyforDeepLearning(DL),AI,andadvancedanalyticsworkloads.Atthehighend,NVIDIA
introducedtheDGXSuperPODequippedwithBlackwellUltraGPUs(specificallytheDGXGB300and
DGXB300systems),offeringunprecedentedcomputationalpowerforenterprisesrequiringscalableAIsupercomputingresources.ThisflagshipsolutionaddressesthegrowingdemandforinfrastructurecapableofhandlingincreasinglycomplexAIworkloadsatscale,eliminatingtheneedforremoteaccesstocentralizedresourcesformanyAIdevelopmentandinferencetasks.
Complementingtheselarge-scaledeployments,NVIDIAintroducedDGXSpark,previouslyknownasProjectDIGITS.ThiscompactAIsupercomputer,developedincollaborationwithMediaTekandpow-eredbytheGB10Blackwellchip,istailoredspecificallyfordevelopers,datascientists,andresearch-ers.ThecollaborationwithMediaTekbringsexpertiseinenergy-efficientchipdesign,enhancingDGXSpark’scapabilitiestoeffectivelysupportinferenceworkloadsattheedge.DGXSparkaimstodemoc-ratizeaccesstocutting-edgeAIcomputingpower,allowinguserstoprototype,fine-tune,andperforminferenceonlargeAImodelswithoutrelianceontraditionaldatacenterresources.Thissolutionis
particularlysuitedfordecentralizedlocations,enablingenhancedAIcapabilitiesinenvironmentswithspace,power,andlatencyconstraints.
ThecollaborationwithEquinixtolaunchtheInstantAIFactoryprovidesamanagedserviceoffering
fullyprovisionedAIfactoriespoweredbyBlackwellUltraDGXSuperPODs.Thisinnovativesolution
significantlyreducesimplementationbarriersfororganizationsseekingimmediateaccesstoenter-
prise-gradeAIinfrastructurewithoutthecomplexitiesofbuildingandmaintainingtheseenvironmentsthemselves.
WhiletheseadvancementspresentcompellingopportunitiesforacceleratingAIinnovationandreduc-inginfrastructurecomplexity,theycomewithimplementationchallenges.Organizationsmustnavi-
gatethecomplexityandcostofinitialdeployment,acquirespecializedskillsindistributedAIandedgecomputing,addressdatasecurityconcernsatdecentralizedlocations,andensureconsistentreliabilityacrossdiverseoperationalenvironments.Despitethesechallenges,NVIDIA’scomprehensiveportfoliodemonstratesastrategicvisionofAIinfrastructureasacohesiveecosystem,ratherthanisolatedde-ploymentmodels,positioningthecompanyasthefoundationalplatformfortheAIeconomy.
5
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
QUANTUMSUCCESS:THEHYBRIDCOMPUTINGIMPERATIVE
AtNVIDIA’sGTC2025QuantumDay,industryleadersrepresentingmajorquantumorganizationsconvergedonacommonmessage:quantumcomputing’ssuccessfuladoptionwilloccurthroughhybridintegrationwithclassicalcomputing,ratherthanasastandalonereplacement.Thishybridmodelisviewedbyleadingplayers,including
AmazonWebServices(AWS)andMicrosoft,asthemostfeasiblepathtowardcommercialsuccess.Huangadvisedthequantumcommunitytopositionquantumcomputingasacomplementaryextensionofclassicalcomputingtopreventstrategicpitfallssimilartothosefacedhistoricallybytechnologieslikemassivelyparallelcomputing.Thisstrategicapproachwillenableindustryplayerstotargetimmediateopportunitieswithpracticalapplications,whilesimultaneouslygeneratingsufficientrevenuetosustainlong-termResearchandDevelopment(R&D)investments,creatingasustainableinnovationecosystemthatcanmethodicallyadvancequantumcapabilitieswithoutfallingvictimtohypecyclesorunrealisticexpectations.
Thequantumcomputingindustryistransitioningfromfoundationalresearchintopracticalapplications,withnota-bleadvancementsinperformancebenchmarks.IonQrecentlyachieveda12%performanceenhancementinbloodpumpdynamicssimulation,whileQuantinuumcontinuessettingquantumvolumerecords.Nevertheless,substan-tialchallengespersistinerrorcorrection,scalability,andintegrationwithinexistingcomputationalinfrastructure.
Industryconsensussuggestsspecializedquantumapplicationscouldreachpracticaladoptionwithin5years,
whilecomprehensiveindustrytransformationmayrequireatleastadecade.Organizationsshouldidentifyspecificcomputationaltaskswherequantumoffersclearadvantages—suchasmaterialsscience,chemicalsimulations,op-timizationchallenges,andscientificresearch—whilecontinuingtouseclassicalcomputingforbroaderworkloads.
Forward-thinkingenterprisesshouldinitiatequantumreadinessassessments,identifyquantum-alignedusecasesrelevanttotheirbusinessgoals,anddevelophybridcomputingframeworks.Buildingcross-disciplinaryteamswithexpertiseinquantumphysics,high-performancecomputing,andtargetedapplicationswillbeessential.Strategicpartnershipswithquantumhardwarevendors,cloudplatforms,andsoftwaredeveloperswillenablecompaniestosecureearly-adopteradvantagesasthetechnologyevolves.
Thenextdecadewillbedefinednotbyquantumreplacingclassicalcomputing,butbyhoweffectivelyorganizationsintegratethesecomplementaryparadigms.Thosethatpositionthemselvesatthisintersection—understanding
boththelimitationsandpossibilitiesofquantumtechnologies—willgainsignificantcompetitiveadvantagesincomputation-intensiveindustries.
—MalikSaadi,VPofStrategicTechnologies
GTC’sinaugural
QuantumDay
6
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
NOTABLEHARDWAREANNOUNCEMENTS
NVIDIA’sdominanceintheAIdatacenterhasnotbeenthrownintoquestion,andthe
ambitiousroadmappresentedatGTCfurtherentrenchesthisposition.Theperformance
improvementstocome,andclarityaboutthecadenceofhardwarereleases,isappreciatedbyitsnetworkofcustomersandGTMpartners,whocanexpectannualhardwareupdates
PaulSchell
IndustryAnalyst
PaulSchell,IndustryAnalystatABIResearch,isresponsible forresearchfocusingon ArtificialIntelligence(AI)hardwareandchipsetswith theAI&MachineLearningResearchService,which
sitswithintheStrategic Technologiesteam.The burgeoningactivityaroundAImeanshisresearchcoversbothestablishedplayersandstartupsdevelopingproductsoptimizedforAIworkloads
forcloud,enterprise,androbotics.WhatevercomesnextintheworldofAIandacceleratedcomputing,weknowthatNVIDIA’ssupercomputers—soldasawholeanddisaggregatedformorepickycustomers,namelyhyperscalers—madeupofGPUs,interconnect,andnetwork-ingsolutions,willremainatthecuttingedge.Nonetheless,itwasinterestingtohearHuang’semphasisontheprogrammabilityofGPUs,whichformspartofthepicturewhenconsideringtheefficiencytrade-offwithApplication-SpecificIntegratedCircuits(ASICs)suchashyperscal-ers’in-housedesigns(thinkGoogle’sTensorProcessingUnit(TPU)andAWS’Inferentia).Whileapplication-specificsiliconhasbeenhonedtotackletransformernetwork-basedGenAI
workloads,tomorrow’sneuralnetworkcouldlookdifferent.Hardwaredevelopmentcycleslagbehindsuchdevelopments,whereastheinherentflexibilityofGPUsrequire“only”anupdat-edsoftwarelibrarytooptimizeforanothertypeofparallelprocessing—somethingNVIDIA’ssoftwareengineershavebeendoingforyears.
GPUS,CPUS,ANDSUPERCHIPSWEREONFULLDISPLAY
ConsciousofGPUs’energyappetite,efficiencyandcostpertokenunderscoreNVIDIA’smes-sagingaboutBlackwell’sreportedlypositiveramp-up,theexpectedimprovementsofBlack-wellUltralaterthisyear,andthe2026Rubinarchitectureinconjunctionwiththenextline
ofcustomArmNeoverseCentralProcessingUnits(CPUs)namedVera.Alsonotableisthe
doublingoftheGPUdensityofRubinUltra,plannedfor2H2027,whichwillhavefourreti-cle-sizedGPUdiesinthesamepackage.UnderpinningNVIDIA’scolossalUS$1trillionofdatacenterCAPEXby2028isthescalingofAIreasoningmodelsandtheconsiderablecomputeneededtocatertomoreintelligentAgenticAIsystems.
Whenunpackingwhat’sunderthehoodofthenewreferencedesigns,suchasNVL144,itisimportanttoconsiderthatNVIDIAcountsthenumberofGPUdies,notthenumberof“pack-aged”GPUs.ThefirstgenerationVeraRubinsystems,duein2026,willbecalledNVL144,
althoughthesystemissimilartoGB200NVL72—thesamerackand72GPUpackages.ThesamerackwillalsobeusedforthefortheGB200andGB300NVL72systems.Separately,
theupcomingB300NVL16willtakeoverfromtheB200HGXformfactorandcontinuetobeinterconnectedwiththein-houseNVLinkprotocol.ThenextrackdesignwillcomewiththeRubinUltraandwillfurtherincreasedensitybyintroducing144GPUpackagesintoasinglerackwithatotalof576GPUdies.
—PaulSchell,IndustryAnalyst
7
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
NVIDIAROLLSBACKSOFTWAREMONETIZATIONTOFOCUSONINFRASTRUCTUREDEMANDGENERATION
In2024,NVIDIAannouncedNVIDIAAIEnterprise,asoftwareplatformaimingtosupport
AImodelinferenceandacceleratedeploymentofapplicationsonNVIDIAhardware.This
ReeceHayden
PrincipalAnalyst
AspartofABIResearch’s strategictechnologiesteam,PrincipalAnalystReeceHayden leadstheArtificialIntelligence (AI)andMachineLearning (ML)researchservice.His primaryfocusisuncovering thetechnical,commercial, andeconomicopportunities inAIsoftwareandAImarkets. ReeceexploresAIsoftware acrossthecompletevaluechain,withacross-verticaland globalviewpoint,toprovidestrategicguidancefor,amongothers,enterprises,hardware andsoftwarevendors,hyper scalers,systemintegrators, andcommunicationservice providers.Reecepreviously workedinthedistributed& edgecomputeteam,where hesupportedclientsacrossvariousareas,includingenter- priseconnectivity(includingnetwork-as-a-service),
edgeAIplatforms,andthesemiconductormarket.
softwareplatformwaspositionedasademanddriverforhardwarebyreducingbarrierstoapplicationdeployment,butalsoamonetizationopportunityforNVIDIAasitisdelivered
asaSoftware-as-a-Service(SaaS)-basedsolutionwithacostofUS$4,500perGPUperyear.
OneyearonanditisclearthatmonetizingNVIDIAAIEnterprisehasbeende-prioritizedwithenergyfocusedonusingthisplatformandothersoftwaretoolstoacceleratedemandgen-
erationforNVIDIA’sAIinfrastructure.ThisisareturntoNVIDIA’straditionalbusinessmodelthathasleveragedtoolslikeCUDAXlibrariesandSoftwareDevelopmentKits(SDKs)tomakeiteasiertooptimizeAIprocessingonhardwareandbuildamoataroundtheirhardware
solution.NVIDIAAIEnterprisewillstillbemonetizedwiththeexistingSaaSmodelstillinplace,butitwillmostlybechanneledtocustomersaswhite-labeledsolutionsthroughpartners
likeAccenture,Amdocs,HewlettPackardEnterprise(HPE),andServiceNow.Althoughthesepartnerswill,mostlikely,takealotof“margin”throughthesewhite-labeledsolutions,NVIDIAwillbetheultimatewinner,asitwillfueldemandforitshighmarginAIinfrastructureandac-celeratedcompute.NVIDIA’smajorsoftwareannouncementsaligncloselywithitstraditional“infrastructuredemandgeneration”strategy.AstheAIhardwaremarketbecomeschalleng- ingmovingforwardwithmorecompetitivesolutionstargetinginferenceworkloads,itmakessenseforNVIDIAtoreturntoitstraditionalmodelfocusedonusingsoftwaretogenerate
demandforitsAIinfrastructure.
NVIDIAFENDSOFFCOMPETITORSBYPLACING“PARTNERS”FRONTANDCENTER
NVIDIA’scommercialmodelhasalwaysfocusedonhorizontalinnovationandverticalcom-mercializationthroughamaturechannelpartnershipecosystem.Thishasbeenasuccessfulapproach,todate,withOEMs,OriginalDesignManufacturers(ODMs),SystemIntegrators
(SIs),IndependentSoftwareVendors(ISVs),andverticalexpertsallplayingacriticalrole.
NVIDIA’sroadmapannouncementclearlysignalsthatvisibilityforitspartnersoutweighsthethreatofcompetitionfromtherestofthemarket.ThisroadmapvisibilityisafirstofitskindintheGPUmarketandisindicativeofhowNVIDIAseesitselfanditspartnersinthemarket.AlthoughthismovewillinvitecompetitiveR&Dfromtheusualsuspectsandnewentrants(especiallytargetinginferenceworkloads),itwillalsoactasabarriertomarketfor
competitors,aschannelpartnerswillmaptheirroadmaptoNVIDIAtoensureguaranteesof“best-in-class”solutions.Beyondhardware,NVIDIAshowcaseditsongoingcommitmenttosoftwarepartners,highlightingtheraftofchannelpartnersthathaveco-developedandwhite-labeledNVIDIAAIEnterprisesolutions.ThisapproachwillenableNVIDIA’spartnerstoleadthemarketinAgenticAI,byleveragingNIMsandNeMotosupportthebuildoutof
optimizedagenticsolutions.
8
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
GeForceRTX5090GPU,whichrunsontheBlackwellarchitecture
INFERENCETAKESCENTERSTAGE,ASAGENTICAIANDREASONINGMODELSCOMETOTHEFOREFRONTOFNVIDIA’STECHNOLOGYR&DAND
EVOLVINGCOMMERCIALSTRATEGY
GenAItechnologyandcommercialmaturityarepushingthemarketawayfromafocusontraining
bettermodelstowardusinginferencetocreateROI.Onthesurface,thistrendcreatesachallengeforNVIDIA.Marketsentimentwidelyviewsinferenceas“easy,”meaningthatitcanberunonlesscom-
pute-dense(expensive)AIinfrastructure,whichposesasignificantrisktoNVIDIA’sleadingAIinfrastruc-ture.Tochangethisnarrative,andplaceNVIDIA’sfull-stacksolutionatthecenteroftheAIinference
market,ittargetedtwokeyareas.
ThefirstwasfocusedonchangingthenarrativearoundAgenticAIandreasoningmodels.Market
hypearoundAgenticAIhasquicklygrown,fueledbytheemergenceofnovel(andhighlyefficient)
reasoningmodels(e.g.,DeepSeek-R1).Thesesmall,moreefficientmodelsthatarereportedlytrainedforafractionofthecostof“traditionalLargeLanguageModels(LLMs)”(e.g.,GPT-4.5)createdwide-
spreadskepticismthatlargeAIdatacentersorfactorieswithleading-edgeinfrastructurewillnotbenecessary,astrainingandinferencingdemandswillnotgrowasquicklyasfirstexpected.Tochangethisnarrativeandattempttorepositionitshardwaretoaddressinference(aswellastraining),NVIDIAshowcasedthatreasoningmodels(comparedtotraditionalone-shotLLMs)usefarmoretokensto
processpromptsgiventheirmulti-stagereasoning.ThissuggeststhatscaledAgenticAIframeworks(evenifbasedonsmallerindividualmodels)willrequireasmuch,ifnotmore,computecapacity.Thesecondwasseveralsoftwareannouncementsthatseektosupportinference,ratherthantraining
workloads.Thesemessages(alongsideothers)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 伊春市上甘嶺區(qū)2025屆四下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析
- 上海思博職業(yè)技術(shù)學(xué)院《數(shù)控技術(shù)及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 景德鎮(zhèn)陶瓷職業(yè)技術(shù)學(xué)院《建筑工程定額與預(yù)算》2023-2024學(xué)年第二學(xué)期期末試卷
- 昆明理工大學(xué)津橋?qū)W院《基礎(chǔ)日語(IV)》2023-2024學(xué)年第一學(xué)期期末試卷
- 石家莊工商職業(yè)學(xué)院《生物醫(yī)學(xué)產(chǎn)品標(biāo)準及生產(chǎn)法規(guī)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廈門東海職業(yè)技術(shù)學(xué)院《中學(xué)生物教育技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東石油化工學(xué)院《中外文化概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西婺源縣重點達標(biāo)名校2025年初三下學(xué)期第二次質(zhì)檢語文試題含解析
- 蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院《DeutschIntensivⅡ》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川省成都市青羊區(qū)部分校2024-2025學(xué)年中考模擬最后十套:語文試題(三)考前提分仿真卷含解析
- 2024北京一零一中初二(下)期中數(shù)學(xué)試題及答案
- 2025-2030中國考試系統(tǒng)行業(yè)市場發(fā)展現(xiàn)狀分析及發(fā)展趨勢與投資前景研究報告
- GB/T 45456-2025包裝折疊紙盒折痕挺度的測定
- 國企薪酬福利體系與市場化改革
- 2025年保安員職業(yè)技能考試筆試試題(700題)附答案
- 2025屆江蘇省江陰市四校高三下-第四次月考數(shù)學(xué)試題試卷
- 2025年04月國家稅務(wù)總局稅務(wù)干部學(xué)院公開招聘事業(yè)單位工作人員36人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2024-2024年上海市高考英語試題及答案
- IEC603645523電線電纜載流量行業(yè)資料國內(nèi)外標(biāo)準規(guī)范
- 最新安全生產(chǎn)管理教材電子版
- 國標(biāo)鐵路機車牽引電機懸掛抱軸瓦油
評論
0/150
提交評論