廣州中醫(yī)藥大學(xué)《數(shù)據(jù)挖掘技術(shù)與應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廣州中醫(yī)藥大學(xué)《數(shù)據(jù)挖掘技術(shù)與應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廣州中醫(yī)藥大學(xué)《數(shù)據(jù)挖掘技術(shù)與應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
廣州中醫(yī)藥大學(xué)《數(shù)據(jù)挖掘技術(shù)與應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
廣州中醫(yī)藥大學(xué)《數(shù)據(jù)挖掘技術(shù)與應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共1頁廣州中醫(yī)藥大學(xué)《數(shù)據(jù)挖掘技術(shù)與應(yīng)用實(shí)驗(yàn)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量評(píng)估是確保數(shù)據(jù)可靠性的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量評(píng)估的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量評(píng)估可以使用多種指標(biāo),如準(zhǔn)確性、完整性、一致性等B.數(shù)據(jù)質(zhì)量評(píng)估可以通過手動(dòng)檢查和自動(dòng)化工具相結(jié)合的方式進(jìn)行C.數(shù)據(jù)質(zhì)量評(píng)估應(yīng)定期進(jìn)行,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問題D.數(shù)據(jù)質(zhì)量評(píng)估只需要在數(shù)據(jù)進(jìn)入數(shù)據(jù)倉庫之前進(jìn)行,之后就不需要再進(jìn)行評(píng)估了2、數(shù)據(jù)分析中的生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者的生存時(shí)間。以下關(guān)于生存分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以計(jì)算生存率、中位生存時(shí)間等指標(biāo)B.Cox比例風(fēng)險(xiǎn)模型常用于生存分析中的風(fēng)險(xiǎn)因素評(píng)估C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒有應(yīng)用D.可以考慮協(xié)變量對(duì)生存時(shí)間的影響3、對(duì)于一個(gè)包含多個(gè)數(shù)值型變量的數(shù)據(jù)集,若要判斷數(shù)據(jù)是否符合正態(tài)分布,應(yīng)采用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.卡方檢驗(yàn)C.正態(tài)性檢驗(yàn)D.F檢驗(yàn)4、在進(jìn)行數(shù)據(jù)融合時(shí),將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡(jiǎn)單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會(huì)引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對(duì)于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合5、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠更好地描述數(shù)據(jù)特征。假設(shè)我們有一組學(xué)生的考試成績(jī)數(shù)據(jù),以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.計(jì)算均值可以準(zhǔn)確反映學(xué)生成績(jī)的平均水平,不受極端值影響B(tài).中位數(shù)能夠避免極端值的干擾,更好地代表成績(jī)的一般水平C.眾數(shù)適用于描述成績(jī)的集中趨勢(shì),尤其當(dāng)數(shù)據(jù)分布均勻時(shí)D.方差越大,說明學(xué)生成績(jī)?cè)椒€(wěn)定,教學(xué)質(zhì)量越高6、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來自不同部門的銷售數(shù)據(jù)、庫存數(shù)據(jù)和客戶數(shù)據(jù),這些數(shù)據(jù)格式不一致且存在重復(fù)和沖突。以下哪種數(shù)據(jù)集成方法在處理這種復(fù)雜的數(shù)據(jù)整合問題時(shí)更能確保數(shù)據(jù)的一致性和準(zhǔn)確性?()A.基于ETL工具的集成B.手動(dòng)編寫代碼進(jìn)行集成C.直接合并數(shù)據(jù),忽略沖突D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行集成7、對(duì)于一個(gè)分類問題,如果不同類別的樣本數(shù)量差異較大,在評(píng)估模型性能時(shí),以下哪種指標(biāo)需要特別關(guān)注?()A.準(zhǔn)確率B.召回率C.F1值D.以上都是8、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。為了得到高質(zhì)量、準(zhǔn)確且可用的數(shù)據(jù),以下哪種數(shù)據(jù)清洗方法通常是首先考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用合適的方法填充缺失值,例如使用均值、中位數(shù)或其他統(tǒng)計(jì)值C.對(duì)重復(fù)記錄進(jìn)行隨機(jī)選擇保留D.忽略數(shù)據(jù)中的問題,直接進(jìn)行分析9、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架變得非常重要。假設(shè)你有數(shù)十億行的銷售數(shù)據(jù)需要進(jìn)行分析,以下關(guān)于分布式計(jì)算框架的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.考慮框架的易用性和學(xué)習(xí)成本,選擇容易上手的框架B.關(guān)注框架的性能和可擴(kuò)展性,能否處理大規(guī)模數(shù)據(jù)并快速得出結(jié)果C.選擇開源且社區(qū)活躍的框架,以便獲取支持和資源D.依據(jù)公司已有的技術(shù)棧和團(tuán)隊(duì)熟悉程度來決定框架10、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估包括準(zhǔn)確性、完整性、一致性等多個(gè)方面。假設(shè)一個(gè)數(shù)據(jù)集在準(zhǔn)確性方面表現(xiàn)良好,但在一致性方面存在問題,可能的原因是什么?()A.數(shù)據(jù)錄入時(shí)的錯(cuò)誤B.不同數(shù)據(jù)源的數(shù)據(jù)整合不當(dāng)C.數(shù)據(jù)更新不及時(shí)D.以上原因都有可能11、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)抽樣可以減少數(shù)據(jù)分析的時(shí)間和成本,同時(shí)保證樣本具有代表性B.隨機(jī)抽樣是一種常用的數(shù)據(jù)抽樣方法,能夠確保每個(gè)數(shù)據(jù)點(diǎn)被選中的概率相等C.分層抽樣可以根據(jù)某些特征將數(shù)據(jù)分為不同層次,然后從各層次中進(jìn)行抽樣D.數(shù)據(jù)抽樣的樣本大小越大,分析結(jié)果就越準(zhǔn)確,因此應(yīng)盡量選擇大樣本12、在進(jìn)行數(shù)據(jù)分析時(shí),發(fā)現(xiàn)數(shù)據(jù)集中存在一些離群點(diǎn)。對(duì)于離群點(diǎn)的處理,以下哪種方法較為恰當(dāng)?()A.直接刪除B.視為異常值,進(jìn)行特殊分析C.用平均值替代D.忽略不管13、假設(shè)要分析某網(wǎng)站不同頁面的訪問量分布情況,以下哪種圖表能夠直觀地展示訪問量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是14、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)要對(duì)數(shù)十億條的用戶行為數(shù)據(jù)進(jìn)行分析,需要快速完成復(fù)雜的計(jì)算任務(wù)。以下哪個(gè)分布式計(jì)算框架在處理這種海量數(shù)據(jù)時(shí)更具優(yōu)勢(shì)?()A.HadoopB.SparkC.FlinkD.Storm15、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是存儲(chǔ)和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉庫的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫可以整合來自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉庫中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉庫只適用于大型企業(yè),對(duì)于中小企業(yè)來說沒有必要建設(shè)16、在處理時(shí)間序列數(shù)據(jù)時(shí),除了考慮趨勢(shì)和季節(jié)性,還需要考慮數(shù)據(jù)的隨機(jī)性。假設(shè)要使用一種方法來平滑時(shí)間序列數(shù)據(jù),同時(shí)保留數(shù)據(jù)的主要特征,以下哪種方法可能是合適的?()A.簡(jiǎn)單移動(dòng)平均B.加權(quán)移動(dòng)平均C.指數(shù)加權(quán)移動(dòng)平均D.以上方法都可以17、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù)是一個(gè)重要的問題。假設(shè)一家公司要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護(hù)員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護(hù)隱私18、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動(dòng)修正,無需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識(shí)別并處理重復(fù)記錄、缺失值和錯(cuò)誤數(shù)據(jù),同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求19、在數(shù)據(jù)挖掘中,若要對(duì)數(shù)據(jù)進(jìn)行分類,以下哪種算法對(duì)噪聲和缺失值具有較好的容忍性?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.隨機(jī)森林20、在數(shù)據(jù)分析中,評(píng)估模型的性能是重要的環(huán)節(jié)。假設(shè)我們已經(jīng)建立了一個(gè)預(yù)測(cè)模型。以下關(guān)于模型評(píng)估的描述,哪一項(xiàng)是不正確的?()A.可以使用交叉驗(yàn)證來評(píng)估模型的穩(wěn)定性和泛化能力B.混淆矩陣可以幫助我們分析模型在不同類別上的預(yù)測(cè)情況C.準(zhǔn)確率是評(píng)估模型性能的唯一指標(biāo),準(zhǔn)確率越高模型越好D.可以根據(jù)具體問題選擇合適的評(píng)估指標(biāo),如召回率、F1值等21、在數(shù)據(jù)分析中,特征工程用于從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要對(duì)文本數(shù)據(jù)進(jìn)行特征工程,以下關(guān)于特征工程的描述,哪一項(xiàng)是不正確的?()A.可以使用詞頻-逆文檔頻率(TF-IDF)來衡量單詞在文本中的重要性B.詞嵌入技術(shù),如Word2Vec,可以將單詞表示為低維向量C.特征工程只需要考慮數(shù)據(jù)的數(shù)值特征,對(duì)于文本等非數(shù)值特征不需要處理D.特征選擇可以去除冗余和無關(guān)的特征,提高模型的效率和性能22、在數(shù)據(jù)分析中,建立回歸模型用于預(yù)測(cè)是常見的任務(wù)。假設(shè)我們要根據(jù)房屋的面積、位置和房齡等因素來預(yù)測(cè)房?jī)r(jià),以下哪種回歸模型可能在這種情況下表現(xiàn)較好?()A.線性回歸B.邏輯回歸C.多項(xiàng)式回歸D.嶺回歸23、在數(shù)據(jù)分析的倫理和法律方面,需要遵循一定的原則和規(guī)范。假設(shè)你處理的是包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)處理的做法,哪一項(xiàng)是最符合倫理和法律要求的?()A.在未獲得授權(quán)的情況下,將數(shù)據(jù)用于其他商業(yè)目的B.對(duì)數(shù)據(jù)進(jìn)行匿名化處理,確保無法追溯到個(gè)人身份C.忽視數(shù)據(jù)的隱私保護(hù),認(rèn)為分析結(jié)果更重要D.隨意分享數(shù)據(jù)給第三方機(jī)構(gòu)24、數(shù)據(jù)分析中的特征選擇用于篩選出對(duì)目標(biāo)變量最有預(yù)測(cè)能力的特征。假設(shè)要分析一個(gè)包含數(shù)百個(gè)特征的數(shù)據(jù)集,以預(yù)測(cè)某種疾病的發(fā)生概率。以下哪種特征選擇方法在處理這種高維度數(shù)據(jù)時(shí)更能有效地篩選出關(guān)鍵特征?()A.過濾式特征選擇B.包裹式特征選擇C.嵌入式特征選擇D.以上方法效果相同25、當(dāng)分析兩個(gè)變量之間的關(guān)系時(shí),如果散點(diǎn)圖呈現(xiàn)出非線性的趨勢(shì),以下哪種方法可以更好地?cái)M合這種關(guān)系?()A.線性回歸B.多項(xiàng)式回歸C.邏輯回歸D.嶺回歸26、假設(shè)要分析某電商平臺(tái)用戶的購(gòu)買行為隨時(shí)間的變化趨勢(shì),以下哪種可視化方法較為合適?()A.折線圖B.柱狀圖C.餅圖D.箱線圖27、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是28、在構(gòu)建數(shù)據(jù)分析模型時(shí),特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因?yàn)樗y以量化C.直接使用原始數(shù)據(jù),不進(jìn)行任何處理D.將所有特征組合成一個(gè)綜合特征29、假設(shè)要分析股票市場(chǎng)數(shù)據(jù)的波動(dòng)性,以下關(guān)于波動(dòng)性分析方法的描述,正確的是:()A.計(jì)算簡(jiǎn)單移動(dòng)平均就能準(zhǔn)確衡量股票價(jià)格的波動(dòng)性B.標(biāo)準(zhǔn)差越大,說明股票價(jià)格的波動(dòng)性越小C.歷史波動(dòng)率對(duì)預(yù)測(cè)未來股票價(jià)格的波動(dòng)沒有參考價(jià)值D.采用ARCH和GARCH模型可以更好地捕捉股票價(jià)格波動(dòng)的聚類性和異方差性30、在數(shù)據(jù)分析中,評(píng)估模型的性能是關(guān)鍵步驟。假設(shè)建立了一個(gè)預(yù)測(cè)客戶流失的模型,需要評(píng)估模型在不同閾值下的準(zhǔn)確性、召回率和F1值等指標(biāo)。以下哪種評(píng)估方法在這種客戶關(guān)系管理場(chǎng)景中能夠更全面地評(píng)估模型的性能?()A.交叉驗(yàn)證B.留出法C.自助法D.以上方法效果相同二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)對(duì)于企業(yè)的供應(yīng)鏈風(fēng)險(xiǎn)管理,論述如何運(yùn)用數(shù)據(jù)分析識(shí)別潛在的風(fēng)險(xiǎn)因素,制定風(fēng)險(xiǎn)應(yīng)對(duì)策略,保障供應(yīng)鏈的穩(wěn)定性。2、(本題5分)在制造業(yè)的設(shè)備故障預(yù)測(cè)中,如何利用傳感器數(shù)據(jù)和歷史維修數(shù)據(jù)進(jìn)行建模,提前預(yù)測(cè)設(shè)備故障,降低生產(chǎn)中斷的風(fēng)險(xiǎn)。3、(本題5分)探討在社交媒體的用戶隱私保護(hù)策略制定中,如何運(yùn)用數(shù)據(jù)分析平衡用戶體驗(yàn)和隱私保護(hù)的需求。4、(本題5分)在供應(yīng)鏈管理中,如何借助數(shù)據(jù)分析來預(yù)測(cè)需求波動(dòng)、優(yōu)化庫存水平和選擇供應(yīng)商?請(qǐng)?jiān)敿?xì)論述數(shù)據(jù)分析在供應(yīng)鏈各個(gè)環(huán)節(jié)的應(yīng)用和價(jià)值,以及可能面臨的數(shù)據(jù)不準(zhǔn)確和市場(chǎng)變化的風(fēng)險(xiǎn)。5、(本題5分)社交媒體廣告投放需要精準(zhǔn)的數(shù)據(jù)分析。以某社交媒體平臺(tái)為例,分析如何利用數(shù)據(jù)分析來確定目標(biāo)受眾、優(yōu)化廣告投放策略、評(píng)估廣告效果,以及如何應(yīng)對(duì)廣告欺詐和虛假流量的問題。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在進(jìn)行聚類分析時(shí),如何評(píng)估聚類結(jié)果的穩(wěn)定性?請(qǐng)介紹評(píng)估聚類穩(wěn)定性的方法和指標(biāo),并舉例說明。2、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行假設(shè)檢驗(yàn)?請(qǐng)?jiān)敿?xì)說明假設(shè)檢驗(yàn)的步驟、常見的檢驗(yàn)方法(如t檢驗(yàn)、方差分析)及適用場(chǎng)景。3、(本題5分)在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),如何考慮外部因素的影響?請(qǐng)舉例說明如何將外部因素納入預(yù)測(cè)模型中。4、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論