




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁江西財經(jīng)大學(xué)《ip設(shè)計》
2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機(jī)視覺中的圖像修復(fù)旨在恢復(fù)圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進(jìn)行修復(fù)以還原其完整的內(nèi)容。以下哪種圖像修復(fù)方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴(kuò)散的圖像修復(fù)B.基于紋理合成的圖像修復(fù)C.基于深度學(xué)習(xí)的圖像修復(fù)D.基于樣例的圖像修復(fù)2、在計算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會對跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能3、計算機(jī)視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個公共場所,以下關(guān)于計算機(jī)視覺在安防監(jiān)控中的應(yīng)用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識別和認(rèn)證C.計算機(jī)視覺系統(tǒng)可以獨立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力4、計算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標(biāo)。以下關(guān)于目標(biāo)跟蹤的敘述,不正確的是()A.目標(biāo)跟蹤可以基于特征匹配、濾波算法或深度學(xué)習(xí)方法來實現(xiàn)B.目標(biāo)的外觀變化、遮擋和背景干擾等因素會給目標(biāo)跟蹤帶來挑戰(zhàn)C.目標(biāo)跟蹤在智能監(jiān)控、人機(jī)交互和自動駕駛等領(lǐng)域有著廣泛的應(yīng)用D.目標(biāo)跟蹤算法能夠在任何情況下都準(zhǔn)確地跟蹤目標(biāo),不受復(fù)雜環(huán)境的影響5、在計算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度和時間不同的同一物體的圖像進(jìn)行精確對齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準(zhǔn)方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進(jìn)行任何配準(zhǔn)操作C.基于圖像灰度值的配準(zhǔn)方法,計算灰度差異D.隨機(jī)選擇圖像中的點進(jìn)行匹配6、在一個基于計算機(jī)視覺的無人駕駛系統(tǒng)中,需要對道路場景進(jìn)行理解和預(yù)測,例如判斷前方是否有行人橫穿馬路。為了實現(xiàn)準(zhǔn)確的場景理解和預(yù)測,以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實例分割C.場景圖生成D.以上都是7、計算機(jī)視覺在虛擬現(xiàn)實(VR)和增強(qiáng)現(xiàn)實(AR)中的應(yīng)用可以提供更沉浸式的體驗。假設(shè)要在VR環(huán)境中實時跟蹤用戶的頭部運動并相應(yīng)地更新場景,以下關(guān)于VR/AR計算機(jī)視覺應(yīng)用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運動跟蹤需求B.計算機(jī)視覺在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺特征提取和深度學(xué)習(xí)的頭部運動跟蹤算法可以實現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計算機(jī)視覺算法的性能沒有影響8、假設(shè)我們要開發(fā)一個計算機(jī)視覺系統(tǒng),用于檢測生產(chǎn)線上產(chǎn)品的表面缺陷。由于產(chǎn)品的種類繁多、缺陷類型復(fù)雜,以下哪種方法可能需要更多的計算資源和時間來訓(xùn)練模型?()A.基于傳統(tǒng)機(jī)器學(xué)習(xí)的方法B.基于淺層神經(jīng)網(wǎng)絡(luò)的方法C.基于深度學(xué)習(xí)的方法D.基于模板匹配的方法9、在計算機(jī)視覺中,圖像分類是一項重要任務(wù)。假設(shè)我們要對大量的動物圖片進(jìn)行分類,將其分為貓、狗、鳥等類別。以下關(guān)于圖像分類方法的描述,哪一項是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動學(xué)習(xí)圖像的特征B.傳統(tǒng)的機(jī)器學(xué)習(xí)方法如支持向量機(jī)(SVM)在處理大規(guī)模圖像數(shù)據(jù)時,性能通常不如深度學(xué)習(xí)方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結(jié)果影響不大D.為了提高分類準(zhǔn)確率,可以使用數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴(kuò)充數(shù)據(jù)集10、在計算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分11、計算機(jī)視覺在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見解。假設(shè)要分析一場足球比賽中球員的跑動軌跡和動作。以下關(guān)于計算機(jī)視覺在體育賽事中的描述,哪一項是不準(zhǔn)確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠?qū)η騿T的動作進(jìn)行分類,如傳球、射門和防守C.計算機(jī)視覺在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)12、在計算機(jī)視覺的圖像增強(qiáng)處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,哪一項是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強(qiáng)圖像的對比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強(qiáng)算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強(qiáng)方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法13、在計算機(jī)視覺中,目標(biāo)檢測是一項重要任務(wù)。假設(shè)我們要開發(fā)一個能夠在交通場景中檢測車輛的系統(tǒng)。如果圖像中的車輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標(biāo)檢測算法可能更適合應(yīng)對這種復(fù)雜情況?()A.基于傳統(tǒng)特征的檢測算法,如HOG特征結(jié)合SVM分類器B.基于深度學(xué)習(xí)的FasterR-CNN算法C.基于模板匹配的檢測算法D.基于顏色特征的檢測算法14、在計算機(jī)視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對一組風(fēng)景圖像進(jìn)行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動學(xué)習(xí)的特征15、當(dāng)進(jìn)行圖像的風(fēng)格遷移任務(wù)時,假設(shè)要將一張照片的風(fēng)格轉(zhuǎn)換為著名繪畫的風(fēng)格,同時保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實現(xiàn)這一目標(biāo)時可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移算法,如Gatys等人提出的方法B.對圖像進(jìn)行簡單的色彩變換和濾鏡處理C.隨機(jī)改變圖像的像素值來模擬風(fēng)格遷移D.只對圖像的邊緣進(jìn)行處理,忽略內(nèi)部區(qū)域二、簡答題(本大題共4個小題,共20分)1、(本題5分)計算機(jī)視覺中如何進(jìn)行版權(quán)服務(wù)中的作品鑒定?2、(本題5分)解釋計算機(jī)視覺在數(shù)字出版中的作用。3、(本題5分)計算機(jī)視覺中如何應(yīng)用循環(huán)神經(jīng)網(wǎng)絡(luò)處理序列圖像?4、(本題5分)計算機(jī)視覺中如何對古代建筑進(jìn)行數(shù)字化建模?三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)開發(fā)一個能夠識別不同種類鼬科動物的程序。2、(本題5分)對舞蹈比賽中的舞蹈音樂選擇和與舞蹈動作的配合度進(jìn)行評估3、(本題5分)運用圖像識別技術(shù),檢測圖書館書架上書籍的擺放順序。4、(本題5分)利用圖像識別算法,對超市貨架上的商品進(jìn)行庫存管理和盤點。5、(本題5分)運用圖像分類技術(shù),對不同種類的牙雕進(jìn)行分類。四、分析題(本大題共4個小題,共40分)1、(本題10分)選取某運動品牌的運動俱樂部會員卡設(shè)計,分析其如何運用視覺元素展示會員卡的權(quán)益和吸引會員加
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025超市供應(yīng)合同協(xié)議書范本 超市供應(yīng)合同樣本
- 2025珠寶首飾抵押合同范本
- 2025精簡版房屋買賣合同模板
- 物流法律法規(guī)培訓(xùn):流通加工與配送法律法規(guī)
- 兩人假結(jié)婚合同書
- 維修工素質(zhì)提升講座
- 2025合同范本模板:國際勞務(wù)輸出合同協(xié)議書
- 大學(xué)課件高等數(shù)學(xué)全微分
- 大學(xué)課件電力系統(tǒng)繼電保護(hù)第一章緒論
- 2025工程分包合同樣本
- 《新聞基礎(chǔ)知識》近年考試真題題庫(附答案)
- 【MOOC】大學(xué)攝影基礎(chǔ)-福建師范大學(xué) 中國大學(xué)慕課MOOC答案
- 【MOOC】固體物理學(xué)-北京交通大學(xué) 中國大學(xué)慕課MOOC答案
- 心衰病人的觀察與護(hù)理
- 20241115某克縫紉機(jī)供應(yīng)鏈計劃IBP PPDS詳細(xì)解決方案
- 愛護(hù)環(huán)境主題班會課件
- 大班游戲活動案例《快樂沙池》
- 糖尿病飲食指導(dǎo)護(hù)理
- DB41T 1633-2018 排油煙設(shè)施清洗服務(wù)規(guī)范
- 連續(xù)梁線型控制技術(shù)交底
- 林業(yè)專業(yè)知識考試試題及答案
評論
0/150
提交評論