重慶市開州區(qū)鎮(zhèn)東初級中學2024-2025學年初三一輪測試數(shù)學試題含解析_第1頁
重慶市開州區(qū)鎮(zhèn)東初級中學2024-2025學年初三一輪測試數(shù)學試題含解析_第2頁
重慶市開州區(qū)鎮(zhèn)東初級中學2024-2025學年初三一輪測試數(shù)學試題含解析_第3頁
重慶市開州區(qū)鎮(zhèn)東初級中學2024-2025學年初三一輪測試數(shù)學試題含解析_第4頁
重慶市開州區(qū)鎮(zhèn)東初級中學2024-2025學年初三一輪測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市開州區(qū)鎮(zhèn)東初級中學2024-2025學年初三一輪測試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥32.下列四個幾何體,正視圖與其它三個不同的幾何體是()A. B.C. D.3.二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象可能是()A. B. C. D.4.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.105.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm6.下列命題是真命題的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共頂點的兩個角是對頂角 D.等腰三角形兩底角相等7.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π8.下列命題中,錯誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分9.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°10.如圖,半徑為1的圓O1與半徑為3的圓O2相內切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.2011年,我國汽車銷量超過了18500000輛,這個數(shù)據(jù)用科學記數(shù)法表示為▲輛.12.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于__________.13.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為__________14.如圖,AB=AC,要使△ABE≌△ACD,應添加的條件是(添加一個條件即可).15.如圖,半圓O的直徑AB=2,弦CD∥AB,∠COD=90°,則圖中陰影部分的面積為_____.16.如圖,拋物線交軸于,兩點,交軸于點,點關于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.17.分式方程+=1的解為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點P從B點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經過多少時間,△BEP為等腰三角形.19.(5分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.20.(8分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過點D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.21.(10分)如圖,直角坐標系中,⊙M經過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.22.(10分)已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.(1)求證:四邊形FBGH是菱形;(2)求證:四邊形ABCH是正方形.23.(12分)如圖,四邊形ABCD內接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.求∠CDE的度數(shù);求證:DF是⊙O的切線;若AC=DE,求tan∠ABD的值.24.(14分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題解析:一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點:在數(shù)軸上表示不等式的解集.2、C【解析】

根據(jù)幾何體的三視圖畫法先畫出物體的正視圖再解答.【詳解】解:A、B、D三個幾何體的主視圖是由左上一個正方形、下方兩個正方形構成的,而C選項的幾何體是由上方2個正方形、下方2個正方形構成的,故選:C.此題重點考查學生對幾何體三視圖的理解,掌握幾何體的主視圖是解題的關鍵.3、C【解析】試題分析:∵二次函數(shù)圖象開口方向向下,∴a<0,∵對稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經過第一、二、四象限,反比例函數(shù)圖象在第一三象限,只有C選項圖象符合.故選C.考點:1.二次函數(shù)的圖象;2.一次函數(shù)的圖象;3.反比例函數(shù)的圖象.4、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.5、A【解析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質6、D【解析】

解:A、如果a+b=0,那么a=b=0,或a=﹣b,錯誤,為假命題;B、=4的平方根是±2,錯誤,為假命題;C、有公共頂點且相等的兩個角是對頂角,錯誤,為假命題;D、等腰三角形兩底角相等,正確,為真命題;故選D.7、D【解析】

根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.本題主要考查由三視圖判斷幾何體,解題的關鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關計算.8、C【解析】

根據(jù)三角形的性質即可作出判斷.【詳解】解:A、正確,符合三角形三邊關系;B、正確;三角形外角和定理;C、錯誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.本題考查了命題真假的判斷,屬于基礎題.根據(jù)定義:符合事實真理的判斷是真命題,不符合事實真理的判斷是假命題,不難選出正確項.9、D【解析】【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內接四邊形的性質求出∠E的度數(shù)即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【點睛】本題考查了圓周角定理、圓內接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關知識是解題的關鍵.10、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.二、填空題(共7小題,每小題3分,滿分21分)11、2.85×2.【解析】

根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×20n,其中2≤|a|<20,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于2還是小于2.當該數(shù)大于或等于2時,n為它的整數(shù)位數(shù)減2;當該數(shù)小于2時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的2個0).【詳解】解:28500000一共8位,從而28500000=2.85×2.12、3【解析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設每個小正方形的邊長為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點:解直角三角形.13、75°【解析】

先根據(jù)同旁內角互補,兩直線平行得出AC∥DF,再根據(jù)兩直線平行內錯角相等得出∠2=∠A=45°,然后根據(jù)三角形內角與外角的關系可得∠1的度數(shù).【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.本題考查了平行線的判定與性質,三角形外角的性質,求出∠2=∠A=45°是解題的關鍵.14、AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來判定其全等;或添加∠B=∠C,利用ASA來判定其全等;或添加∠AEB=∠ADC,利用AAS來判定其全等.等(答案不唯一).15、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S陰影=S扇形COD==.故答案為.16、【解析】

根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關于y軸的對稱點D′(﹣1,4)、作點E關于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關于對稱軸的對稱點E的坐標為(2,3),作點D關于y軸的對稱點D′(﹣1,4),作點E關于x軸的對稱點E′(2,﹣3),連結D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.本題主要考查拋物線的性質以及兩點間的距離公式,解題的關鍵是熟練掌握拋物線的性質,利用數(shù)形結合得出答案.17、【解析】

根據(jù)解分式方程的步驟,即可解答.【詳解】方程兩邊都乘以,得:,解得:,檢驗:當時,,所以分式方程的解為,故答案為.考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解解分式方程一定注意要驗根.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)從運動開始經過2s或s或s或s時,△BEP為等腰三角形.【解析】

(1)根據(jù)內錯角相等,得到兩邊平行,然后再根據(jù)三角形內角和等于180度得到另一對內錯角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,設經過ts時,△BEP是等腰三角形,當P在BC上時,①BP=EB=2cm,t=2時,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC=,∴BP=cm,t=時,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,則BP=2BN,∴cosB=,∴,BN=cm,∴BP=,∴t=時,△BEP是等腰三角形;當P在CD上不能得出等腰三角形,∵AB、CD間的最短距離是4cm,CA⊥AB,CA=4cm,當P在AD上時,只能BE=EP=2cm,過P作PQ⊥BA于Q,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,設PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:從運動開始經過2s或s或s或s時,△BEP為等腰三角形.本題主要考查平行四邊形的判定定理及一元二次方程的解法,要求學生能夠熟練利用邊角關系解三角形.19、(1)詳見解析;(2)30°.【解析】

(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.本題考查尺規(guī)作圖,考查了垂直平分線的性質、直角三角形兩銳角互余的性質及等腰三角形的性質,線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質是解題關鍵.20、(1)詳見解析;(2).【解析】

(1)連接OD,由平行線的判定定理可得OD∥AC,利用平行線的性質得∠ODE=∠DEA=90°,可得DE為⊙O的切線;

(2)連接CD,求弧DC與弦DC所圍成的圖形的面積利用扇形DOC面積-三角形DOC的面積計算即可.【詳解】解:(1)證明:連接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE為⊙O的切線;(2)連接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC為直徑,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等邊三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC與弦DC所圍成的圖形的面積=﹣=﹣.本題考查的知識點是等腰三角形的性質、切線的判定與性質以及扇形面積的計算,解題的關鍵是熟練的掌握等腰三角形的性質、切線的判定與性質以及扇形面積的計算.21、(1)詳見解析;(2)(,1).【解析】

(1)根據(jù)勾股定理可得AB的長,即⊙M的直徑,根據(jù)同弧所對的圓周角可得BD平分∠ABO;(2)作輔助構建切線AE,根據(jù)特殊的三角函數(shù)值可得∠OAB=30°,分別計算EF和AF的長,可得點E的坐標.【詳解】(1)∵點A(,0)與點B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過點A作AE⊥AB于E,交BD的延長線于點E,過E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點E的坐標為(,1).此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質以及三角函數(shù)等知識.注意準確作出輔助線是解此題的關鍵.22、(1)見解析(2)見解析【解析】

(1)由三角形中位線知識可得DF∥BG,GH∥BF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;

(2)連結BH,交AC于點O,利用平行四邊形的對角線互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根據(jù)對角線互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.【詳解】(1)∵點F、G是邊AC的三等分點,

∴AF=FG=GC.

又∵點D是邊AB的中點,

∴DH∥BG.

同理:EH∥BF.

∴四邊形FBGH是平行四邊形,

連結BH,交AC于點O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四邊形FBGH是菱形;

(2)∵四邊形FBGH是平行四邊形,

∴BO=HO,F(xiàn)O=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四邊形ABCH是平行四邊形.

∵AC⊥BH,AB=BC,

∴四邊形ABCH是正方形.本題考查正方形的判定,菱形的判定和性質,三角形的中位線,熟練掌握正方形的判定和性質是解題的關鍵.23、(1)90°;(1)證明見解析;(3)1.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論