




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
18.2.1矩形復(fù)習(xí)題一、單選題1.一技術(shù)人員用刻度尺(單位:)測量某三角形部件的尺寸.如圖所示,已知,點D為邊的中點,點A、B對應(yīng)的刻度為1、7,則(
)
A. B. C. D.2.如圖,矩形的對角線相交于點,下列結(jié)論一定正確的是(
)A.平分B. C. D.3.在四邊形中,.下列說法能使四邊形為矩形的是(
)A. B. C. D.4.如圖.在中,,,,,點是邊的中點,則(
)
A. B. C.2 D.15.如圖,在矩形中,點E為延長線上一點,F(xiàn)為的中點,以B為圓心,長為半徑的圓弧過與的交點G,連接.若,,則(
)
A.2 B.2.5 C.3 D.3.56.如圖,將四根木條用釘子釘成一個矩形框架,然后向左扭動框架,觀察所得四邊形的變化.下面判斷錯誤的是(
)
A.四邊形由矩形變?yōu)槠叫兴倪呅?B.對角線的長度減小C.四邊形的面積不變 D.四邊形的周長不變7.如圖,在中,,點M是斜邊的中點,以為邊作正方形,若,則(
)
A. B. C.12 D.168.我國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題:“今有圓材,徑二尺五寸.欲為方版,令厚七寸,問廣幾何?”結(jié)合右圖,其大意是:今有圓形材質(zhì),直徑為25寸,要做成方形板材,使其厚度達(dá)到7寸.則的長是(
)
A.寸 B.25寸 C.24寸 D.7寸9.如圖,矩形ABCD中,分別以A,C為圓心,以大于的長為半徑作弧,兩弧相交于M,N兩點,作直線MN分別交AD,BC于點E,F(xiàn),連接AF,若BF=3,AE=5,以下結(jié)論錯誤的是(
)A.AF=CF B.∠FAC=∠EACC.AB=4 D.AC=2AB10.如圖,在四邊形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,點P從點D出發(fā),以1cm/s的速度向點A運動,點M從點B同時出發(fā),以相同的速度向點C運動,當(dāng)其中一個動點到達(dá)端點時,兩個動點同時停止運動.設(shè)點P的運動時間為t(單位:s),下列結(jié)論正確的是(
)A.當(dāng)時,四邊形ABMP為矩形B.當(dāng)時,四邊形CDPM為平行四邊形C.當(dāng)時,D.當(dāng)時,或6s二、填空題11.在中,,則邊上的中線.12.如圖,為斜邊上的中線,為的中點.若,,則.
13.矩形的對角線,相交于點,點在矩形邊上,連接.若,,則.14.如圖,矩形的對角線相交于點O,過點O的直線交,于點E,F(xiàn),若,,則圖中陰影部分的面積為.15.如圖,在和中,,、、分別為、、的中點,若,則.16.如圖,在中,,,,點,分別在,上,將沿直線翻折,點的對應(yīng)點恰好落在上,連接,若,則的長為.17.小瑩按照如圖所示的步驟折疊A4紙,折完后,發(fā)現(xiàn)折痕AB′與A4紙的長邊AB恰好重合,那么A4紙的長AB與寬AD的比值為.18.如圖,矩形中,,是的中點,線段在邊上左右滑動;若,則的最小值為.三、解答題19.如圖,在中,,.(1)在斜邊上求作線段,使,連接;(要求:尺規(guī)作圖并保留作圖痕跡,不寫作法,標(biāo)明字母)(2)若,求的長.20.如圖,在平行四邊形ABCD中,的平分線交于點E,的平分線交于點F,點G,H分別是和的中點.
(1)求證:;(2)連接.若,請判斷四邊形的形狀,并證明你的結(jié)論.21.如圖,在平行四邊形中,為線段的中點,連接,,延長,交于點,連接,.
(1)求證:四邊形是矩形;(2)若,,求四邊形的面積.22.如圖,平行四邊形ABCD中,E為BC邊的中點,連接AE并延長交DC的延長線于點F,延長EC至點G,使CG=CE,連接DG、DE、FG.(1)求證:△ABE≌△FCE;(2)若AD=2AB,求證:四邊形DEFG是矩形.23.如圖,在矩形ABCD中,E為AB的中點,連接CE并延長,交DA的延長線于點F.(1)求證:△AEF≌△BEC.(2)若CD=4,∠F=30°,求CF的長.24.如圖,將矩形紙片折疊,使點B與點D重合,點A落在點P處,折痕為.(1)求證:;(2)若,求的長.答案:一、單選題1.B【分析】由圖求得的長度,結(jié)合直角三角形斜邊上的中線等于斜邊的一半即可求解.解:由圖可知,在中,,點D為邊的中點,,故選:B.2.C【分析】根據(jù)矩形的對角線相等,以及矩形與菱形性質(zhì)的區(qū)別判斷即可.解:由矩形的對角線相交于點,根據(jù)矩形的對角線相等,可得.故選:C.3.C【分析】結(jié)合平行四邊形的判定和性質(zhì)及矩形的判定逐一分析即可.解:A:,為平行四邊形而非矩形故A不符合題意B:,為平行四邊形而非矩形故B不符合題意C:∴∥四邊形為矩形故C符合題意D:不是平行四邊形也不是矩形故D不符合題意故選:C.4.A【分析】根據(jù)勾股定理可先求得的長度,根據(jù)直角三角形的斜邊上的中線與斜邊的數(shù)量關(guān)系,可求得的長度,根據(jù)三角形的中位線定理可求得答案.解:∵,∴為直角三角形.∴.∵點為的斜邊的中點,∴.∵,,∴.故選:A.5.C【分析】利用直角三角形斜邊中線的性質(zhì)求得,在中,利用勾股定理即可求解.解:∵矩形中,∴,∵F為的中點,,∴,在中,,故選:C.6.C【分析】根據(jù)四邊形的不穩(wěn)定性、矩形的性質(zhì)和平行四邊形的性質(zhì),結(jié)合圖形前后變化逐項判斷即可.解:A、因為矩形框架向左扭動,,,但不再為直角,所以四邊形變成平行四邊形,故A正確,不符合題意;B、向左扭動框架,的長度減小,故B正確,不符合題意;C、因為拉成平行四邊形后,高變小了,但底邊沒變,所以面積變小了,故C錯誤,符合題意;D、因為四邊形的每條邊的長度沒變,所以周長沒變,故D正確,不符合題意,故選:C.7.B【分析】根據(jù)正方形的面積可求得的長,利用直角三角形斜邊的中線求得斜邊的長,利用勾股定理求得的長,根據(jù)三角形的面積公式即可求解.解:∵,∴,∵中,點M是斜邊的中點,∴,∴,∴,故選:B.8.C【分析】根據(jù)矩形的性質(zhì),勾股定理求解.解:由題意知,四邊形是矩形,在中,故選:C.9.D【分析】根據(jù)作圖過程可得,是的垂直平分線,再由矩形的性質(zhì)可以證明,可得再根據(jù)勾股定理可得AB的長,即可判定得出結(jié)論.解:A,根據(jù)作圖過程可得,是的垂直平分線,故此選項不符合題意.B,如圖,由矩形的性質(zhì)可以證明,∵是的垂直平分線,故此選項不符合題意.C,在中故此選項不符合題意.D,故此選項符合題意.故選:D.10.D【分析】計算AP和BM的長,得到AP≠BM,判斷選項A;計算PD和CM的長,得到PD≠CM,判斷選項B;按PM=CD,且PM與CD不平行,或PM=CD,且PM∥CD分類討論判斷選項C和D.解:由題意得PD=t,AP=AD-PD=10-t,BM=t,CM=8-t,∠A=∠B=90°,A、當(dāng)時,AP=10-t=6cm,BM=4cm,AP≠BM,則四邊形ABMP不是矩形,該選項不符合題意;B、當(dāng)時,PD=5cm,CM=8-5=3cm,PD≠CM,則四邊形CDPM不是平行四邊形,該選項不符合題意;作CE⊥AD于點E,則∠CEA=∠A=∠B=90°,∴四邊形ABCE是矩形,∴BC=AE=8cm,∴DE=2cm,當(dāng)PM=CD,且PM與CD不平行時,作MF⊥AD于點F,CE⊥AD于點E,∴四邊形CEFM是矩形,∴FM=CE;∴Rt△PFM≌Rt△DEC(HL),∴PF=DE=2,EF=CM=8-t,∴AP=10-4-(8-t)=10-t,解得t=6s;當(dāng)PM=CD,且PM∥CD時,∴四邊形CDPM是平行四邊形,∴DP=CM,∴t=8-t,解得t=4s;綜上,當(dāng)PM=CD時,t=4s或6s;選項C不符合題意;選項D符合題意;故選:D.二、填空題11.5【分析】先利用勾股定理求出的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半進(jìn)行求解即可解:在中,,∴,∴邊上的中線,故答案為:5.12.3【分析】首先根據(jù)直角三角形斜邊中線的性質(zhì)得出,然后利用勾股定理即可得出,最后利用三角形中位線定理即可求解.解:∵在中,為斜邊上的中線,,∴,∴,∵為的中點,∴故答案為:3.13.或【分析】根據(jù)題意畫出圖形,分點在上和上兩種情況討論即可求解.解:∵四邊形是矩形,∴,∴,∵,∴∴,如圖所示,當(dāng)點在上時,
∵,∴如圖所示,當(dāng)點在上時,
∵,∴,故答案為:或.14.6【分析】結(jié)合矩形的性質(zhì)證明,可得與的面積相等,從而將陰影部分的面積轉(zhuǎn)化為的面積進(jìn)行求解即可.解:∵四邊形是矩形,,∴,,,∴,又∵,在和中,,∴,∴,∴,∴,故答案為:6.15.1【分析】由直角三角形斜邊中線的性質(zhì)得出AB=2DE,再由三角形中位線的性質(zhì)可得FG的長;解:∵Rt△ABC中,點E是AB的中點,DE=1,∴AB=2DE=2,∵點F、G分別是AC、BC中點,∴,故答案為:116.7.5【分析】在中,利用勾股定理求出的長,然后根據(jù)得出,再根據(jù)折疊的性質(zhì)可得.根據(jù)求得的長.解:在中,,,,.,,,....將沿直線翻折,點的對應(yīng)點恰好落在上,..故答案為:7.5.17.【分析】判定△AB′D′是等腰直角三角形,即可得出AB′=AD,再根據(jù)AB′=AB,再計算即可得到結(jié)論.解:∵四邊形ABCD是矩形,∴∠D=∠B=∠DAB=90°,由操作一可知:∠DAB′=∠D′AB′=45°,∠AD′B′=∠D=90°,AD=AD′,∴△AB′D′是等腰直角三角形,∴AD=AD′=B′D′,由勾股定理得AB′=AD,又由操作二可知:AB′=AB,∴AD=AB,∴=,∴A4紙的長AB與寬AD的比值為.故答案為:.18.【分析】如圖,作G關(guān)于AB的對稱點G',在CD上截取CH=1,然后連接HG'交AB于E,在EB上截取EF=1,此時GE+CF的值最小,可得四邊形EFCH是平行四邊形,從而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的長,即可求解.解:如圖,作G關(guān)于AB的對稱點G',在CD上截取CH=1,然后連接HG'交AB于E,在EB上截取EF=1,此時GE+CF的值最小,∴G'E=GE,AG=AG',∵四邊形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,∵CH=EF=1,∴四邊形EFCH是平行四邊形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G為邊AD的中點,∴AG=AG'=1∴DG′=AD+AG'=2+1=3,DH=4-1=3,∴,即的最小值為.故答案為:三、解答題19.(1)解:所作線段如圖所示:
(2)解:∵,,∴,∵,∴,∴,即點O為的中點,∵,∴,∴,∴.20.(1)解:證明:∵四邊形是平行四邊形,∴,,,,∴,,∵和的平分線、分別交、于點E、F,∴,,∴,在和中,,∴.(2)證明:∵,∴,,∴,∴,∵點G、H分別為、的中點,∴,,∴四邊形是平行四邊形∵,G為的中點,∴,∴四邊形是矩形.21.解:(1)∵四邊形是平行四邊形,∴,∴,,∵為線段的中點,∴,∴,∴,∴四邊形是平行四邊形,∵,∴平行四邊形是矩形.(2)過點作于點,∵四邊形是平行四邊形,∴,∵四邊形是矩形,∴,∴,∵,∴,∴四邊形的面積等于,∵,,∵點是對角線的中心,∴,∴,∴平行四邊形的面積為:.
22.解:(1)證明:∵四邊形ABCD是平行四邊形,再證明DF=EG,即可證明四邊形DEFG是矩形.∴ABCD,∴∠EAB=∠CFE,又∵E為BC的中點,∴EC=EB,∴在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)證明:∵△ABE≌△FCE,∴AB=CF,∵四邊形ABCD是平行四邊形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四邊形DEFG是平行四邊形,∵E為BC的中點,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四邊形DEFG是矩形.23.解:(1)證明:∵四邊形ABCD是矩形,∴,∴∠F=∠BCE,∵E是AB中點,∴AE=EB,∵∠AEF=∠BEC,∴△AEF≌△BEC(AAS).(2)解:∵四邊形ABCD是矩形,∴∠D=90°,∵CD=4,∠F=30°,∴CF=2CD=2×4=8,即CF的長為8.24.解:(1)∵四邊形ABCD是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省臨沂市臨沭縣一中2025屆高三第二次聯(lián)考調(diào)研英語試題含解析
- 江蘇省常州市新北區(qū)百草園小學(xué)2025年五下數(shù)學(xué)期末調(diào)研試題含答案
- 四川省遂寧第二中學(xué)2024-2025學(xué)年高三下期中考英語試題含解析
- 2025年度技術(shù)轉(zhuǎn)讓合同協(xié)議
- 夏河縣2025屆三年級數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 研發(fā)團隊商業(yè)合同保密協(xié)議
- 智慧農(nóng)業(yè)技術(shù)農(nóng)業(yè)現(xiàn)代化的創(chuàng)新路徑
- 蘇州工業(yè)園區(qū):打造一流合同交易中心
- 經(jīng)紀(jì)代理合同協(xié)議范本
- 國資委事業(yè)單位聘用合同樣本
- 大車司機勞務(wù)協(xié)議書
- 中醫(yī)把脈入門培訓(xùn)課件
- 學(xué)生軍訓(xùn)教官合同協(xié)議
- 期刊編輯的學(xué)術(shù)期刊內(nèi)容審核標(biāo)準(zhǔn)考核試卷
- 知識產(chǎn)權(quán)監(jiān)管培訓(xùn)課件
- 油田節(jié)能降耗技術(shù)-全面剖析
- 廣西欽州市欽州港經(jīng)濟技術(shù)開發(fā)區(qū)中學(xué)2025年初三第二學(xué)期第一次區(qū)模擬化學(xué)試題含解析
- 婦科護理標(biāo)準(zhǔn)化管理
- 小學(xué)2025年國防教育課程開發(fā)計劃
- 數(shù)學(xué)教師實習(xí)日記16篇
- 家裝施工驗收手冊(共13頁)
評論
0/150
提交評論