




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁湖北國土資源職業(yè)學(xué)院
《智能信息系統(tǒng)設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、當分析一個物流企業(yè)的配送數(shù)據(jù),包括貨物類型、配送地點、運輸時間等,以優(yōu)化配送路線和提高配送效率??紤]到實際的交通狀況和限制條件,以下哪種優(yōu)化方法可能是適用的?()A.線性規(guī)劃B.模擬退火算法C.遺傳算法D.以上都是2、在數(shù)據(jù)分析中,模型的可解釋性對于理解模型的決策過程和結(jié)果非常重要。假設(shè)建立了一個用于信用評估的模型,需要向決策者解釋模型是如何做出信用評分的。以下哪種模型在提供可解釋性方面更具優(yōu)勢?()A.決策樹模型B.神經(jīng)網(wǎng)絡(luò)模型C.隨機森林模型D.以上模型可解釋性相同3、對于一個具有多個特征的數(shù)據(jù)集,若要進行特征縮放,以下哪種方法可以將特征值映射到特定的區(qū)間?()A.最小-最大縮放B.標準化C.正則化D.以上都是4、對于一個具有多個特征的數(shù)據(jù)集,若要進行特征選擇,以下哪種方法是基于特征重要性評估的?()A.遞歸特征消除B.基于隨機森林的特征重要性評估C.基于LASSO回歸的特征選擇D.以上都是5、在數(shù)據(jù)預(yù)處理階段,對于含有大量缺失值的數(shù)據(jù),以下哪種處理方法不一定合適?()A.直接刪除含有缺失值的記錄B.用均值、中位數(shù)或眾數(shù)來填充缺失值C.通過建立模型來預(yù)測缺失值D.對缺失值不做任何處理6、在數(shù)據(jù)分析的過程中,建立數(shù)據(jù)模型是常見的做法。關(guān)于數(shù)據(jù)模型的選擇,以下說法不正確的是()A.線性回歸模型適用于分析自變量和因變量之間的線性關(guān)系B.決策樹模型能夠處理非線性關(guān)系,并且具有較好的可解釋性C.神經(jīng)網(wǎng)絡(luò)模型在處理大規(guī)模、復(fù)雜的數(shù)據(jù)時表現(xiàn)出色,但模型的解釋性較差D.選擇數(shù)據(jù)模型時,只需要考慮模型的預(yù)測準確性,而不需要考慮模型的復(fù)雜度和計算資源需求7、在數(shù)據(jù)分析中,異常值檢測對于發(fā)現(xiàn)數(shù)據(jù)中的異常情況至關(guān)重要。假設(shè)要在一組生產(chǎn)數(shù)據(jù)中檢測異常值,以下關(guān)于異常值檢測方法的描述,正確的是:()A.僅通過觀察數(shù)據(jù)的分布,主觀判斷異常值,不使用任何定量方法B.采用單一的異常值檢測算法,不考慮其局限性和數(shù)據(jù)特點C.綜合運用多種異常值檢測方法,結(jié)合數(shù)據(jù)的領(lǐng)域知識和業(yè)務(wù)背景,對檢測結(jié)果進行評估和解釋D.忽略異常值的存在,認為它們對數(shù)據(jù)分析結(jié)果沒有影響8、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機抽樣是一種常用的方法。以下關(guān)于隨機抽樣的描述中,錯誤的是?()A.隨機抽樣可以保證樣本的代表性和隨機性B.隨機抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機抽樣可以提高數(shù)據(jù)分析的效率和準確性D.隨機抽樣只適用于大規(guī)模數(shù)據(jù)集,對于小數(shù)據(jù)集無法使用9、在數(shù)據(jù)分析中,社交網(wǎng)絡(luò)分析用于研究人與人之間的關(guān)系。假設(shè)要分析一個社交網(wǎng)絡(luò)中用戶的影響力,以下關(guān)于社交網(wǎng)絡(luò)分析的描述,哪一項是不正確的?()A.中心性指標,如度中心性、介數(shù)中心性和接近中心性,可以衡量節(jié)點在網(wǎng)絡(luò)中的重要性B.社區(qū)發(fā)現(xiàn)算法可以將網(wǎng)絡(luò)劃分為不同的社區(qū),揭示潛在的群體結(jié)構(gòu)C.社交網(wǎng)絡(luò)分析只關(guān)注節(jié)點之間的連接關(guān)系,不考慮節(jié)點的屬性信息D.可以通過傳播模型來模擬信息在社交網(wǎng)絡(luò)中的傳播過程10、在處理時間序列數(shù)據(jù)時,如果需要對數(shù)據(jù)進行季節(jié)性分解,以下哪種方法在Python中常用?()A.statsmodels庫中的seasonal_decompose函數(shù)B.scikit-learn庫中的decomposition模塊C.pandas庫中的resample函數(shù)D.matplotlib庫中的plot函數(shù)11、數(shù)據(jù)分析中的文本分類任務(wù)需要對大量文本進行自動分類。假設(shè)要對新聞文章進行分類,如政治、經(jīng)濟、體育等類別,文本內(nèi)容多樣且語言表達復(fù)雜。以下哪種方法在處理這種多類別文本分類問題時更能提高分類準確性?()A.使用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機器學(xué)習(xí)分類算法C.依賴人工制定的分類規(guī)則D.隨機分類12、在進行數(shù)據(jù)分析時,數(shù)據(jù)的可視化呈現(xiàn)方式會影響對數(shù)據(jù)的理解和解讀。假設(shè)我們要展示不同年齡段人群的收入分布情況。以下關(guān)于數(shù)據(jù)可視化呈現(xiàn)的描述,哪一項是不準確的?()A.可以使用小提琴圖同時展示數(shù)據(jù)的分布和密度B.雷達圖適合比較多個變量在不同類別上的表現(xiàn)C.3D圖表能夠更生動地展示數(shù)據(jù),應(yīng)盡量使用3D圖表D.選擇合適的數(shù)據(jù)可視化呈現(xiàn)方式要考慮數(shù)據(jù)的特點和分析目的13、在進行地理數(shù)據(jù)分析時,以下關(guān)于地理數(shù)據(jù)分析方法的描述,正確的是:()A.簡單的地圖繪制就能充分展示地理數(shù)據(jù)的特征B.空間聚類分析對于發(fā)現(xiàn)地理數(shù)據(jù)中的聚集模式?jīng)]有幫助C.地理加權(quán)回歸可以考慮空間異質(zhì)性對變量關(guān)系的影響D.不需要考慮地理坐標系和投影的選擇,對分析結(jié)果影響不大14、在數(shù)據(jù)庫中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive15、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和知識方面發(fā)揮著重要作用。假設(shè)要從一個電商網(wǎng)站的用戶購買記錄中挖掘潛在的消費模式,以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)經(jīng)常一起購買的商品組合B.分類算法可以預(yù)測新用戶可能感興趣的商品類別C.數(shù)據(jù)挖掘的結(jié)果總是準確無誤的,可以直接用于決策,無需進一步驗證D.聚類分析可以將用戶分為具有相似購買行為的不同群體16、數(shù)據(jù)分析中的數(shù)據(jù)標注對于監(jiān)督學(xué)習(xí)算法至關(guān)重要。假設(shè)要對圖像數(shù)據(jù)進行分類標注,以下關(guān)于數(shù)據(jù)標注方法的描述,正確的是:()A.讓非專業(yè)人員進行標注,不進行質(zhì)量控制B.不制定標注規(guī)范和標準,導(dǎo)致標注結(jié)果不一致C.組織專業(yè)的標注團隊,制定明確的標注規(guī)范和流程,進行質(zhì)量檢查和審核,確保標注數(shù)據(jù)的準確性和一致性D.認為數(shù)據(jù)標注是簡單的任務(wù),不需要投入太多資源和時間17、數(shù)據(jù)分析中的文本分析是一個重要領(lǐng)域。假設(shè)你要對大量的客戶評論進行情感分析,判斷是正面、負面還是中性。以下關(guān)于文本分析方法的選擇,哪一項是最重要的?()A.使用詞袋模型,基于詞頻統(tǒng)計進行分析B.運用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò),自動提取特征C.借助詞典和規(guī)則,根據(jù)預(yù)定義的情感詞和句式判斷D.隨機抽取部分評論進行人工分析,以此類推整體18、數(shù)據(jù)分析中的模型部署是將訓(xùn)練好的模型應(yīng)用到實際生產(chǎn)環(huán)境中。假設(shè)要將一個預(yù)測模型部署為在線服務(wù),以下哪個方面可能是需要重點關(guān)注的?()A.模型的性能和響應(yīng)時間B.數(shù)據(jù)的安全性和隱私保護C.系統(tǒng)的可擴展性和穩(wěn)定性D.以上方面都需要重點關(guān)注19、數(shù)據(jù)分析中的數(shù)據(jù)降維技術(shù)常用于減少數(shù)據(jù)的維度,同時保留重要信息。假設(shè)你有一個高維的數(shù)據(jù)集,包含眾多特征。以下關(guān)于數(shù)據(jù)降維方法的選擇,哪一項是最需要考慮的因素?()A.降維后的結(jié)果是否易于解釋和可視化B.降維方法的計算復(fù)雜度和效率C.降維過程中是否會丟失關(guān)鍵的信息D.降維方法是否新穎和熱門20、在進行數(shù)據(jù)可視化時,若要同時展示多個變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點圖矩陣B.雷達圖C.熱力圖D.樹狀圖21、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理,假設(shè)數(shù)據(jù)集中存在極端值,這些極端值可能會對后續(xù)的分析產(chǎn)生較大影響。以下哪種處理極端值的方法可能較為恰當?()A.直接刪除包含極端值的數(shù)據(jù)點B.對極端值進行縮尾或截尾處理C.將極端值替換為平均值D.不處理極端值,保留原始數(shù)據(jù)22、當分析一個網(wǎng)站的用戶訪問數(shù)據(jù),包括頁面瀏覽量、停留時間、跳出率等,以改進網(wǎng)站的用戶體驗和布局設(shè)計。為了確定哪些頁面需要重點優(yōu)化,以下哪個指標可能是最有價值的?()A.頁面瀏覽量B.平均停留時間C.跳出率D.以上都是23、在數(shù)據(jù)分析的實時數(shù)據(jù)分析場景中,假設(shè)要對不斷產(chǎn)生的數(shù)據(jù)流進行快速處理和分析,以下哪種技術(shù)或架構(gòu)可能是合適的選擇?()A.流處理框架,如ApacheFlinkB.批處理框架,如ApacheHadoopC.關(guān)系型數(shù)據(jù)庫,進行實時查詢D.不進行實時處理,先存儲數(shù)據(jù)再事后分析24、在對一個社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進行分析,例如好友關(guān)系、群組活動等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是25、假設(shè)要分析一個城市的交通流量數(shù)據(jù),以優(yōu)化交通信號燈的設(shè)置和道路規(guī)劃。數(shù)據(jù)包括不同時間段、不同路段的車流量、車速等信息。為了找到交通擁堵的規(guī)律和原因,以下哪個分析角度可能是關(guān)鍵的?()A.時空分析B.基于車型的分類分析C.只關(guān)注高峰時段的分析D.隨機抽樣分析26、在數(shù)據(jù)分析中的分類算法評估指標中,以下關(guān)于準確率和召回率的說法,不正確的是()A.準確率是指分類正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類的正例樣本數(shù)占實際正例樣本數(shù)的比例C.在某些情況下,準確率和召回率可能存在矛盾,需要根據(jù)具體問題權(quán)衡二者的重要性D.為了綜合評估分類算法的性能,只需要關(guān)注準確率和召回率其中一個指標即可,另一個可以忽略27、對于一個包含多個變量的數(shù)據(jù)集,若要找出變量之間的潛在結(jié)構(gòu)關(guān)系,以下哪種方法較為有效?()A.主成分分析B.判別分析C.對應(yīng)分析D.典型相關(guān)分析28、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)我們在分析文本數(shù)據(jù),以下哪種特征提取方法可能有助于將文本轉(zhuǎn)化為可用于模型訓(xùn)練的數(shù)值特征?()A.詞袋模型B.TF-IDFC.詞嵌入D.以上都是29、數(shù)據(jù)分析在電商領(lǐng)域有著廣泛的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在電商客戶關(guān)系管理中的作用,不準確的是()A.可以對客戶進行細分,根據(jù)客戶的購買行為和偏好提供個性化的推薦和服務(wù)B.通過分析客戶的反饋和評價,改進產(chǎn)品和服務(wù)質(zhì)量,提高客戶滿意度C.預(yù)測客戶的流失風險,采取相應(yīng)的措施進行客戶保留和挽回D.數(shù)據(jù)分析在電商客戶關(guān)系管理中作用不大,傳統(tǒng)的客戶關(guān)系管理方法更加有效30、在數(shù)據(jù)分析中,模型的選擇和調(diào)優(yōu)需要根據(jù)數(shù)據(jù)和問題的特點進行。假設(shè)我們要解決一個分類問題。以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項是不準確的?()A.不同的模型在不同的數(shù)據(jù)集上表現(xiàn)可能不同,需要進行試驗和比較B.可以通過調(diào)整模型的超參數(shù)來優(yōu)化模型的性能C.模型越復(fù)雜,性能就一定越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.可以使用網(wǎng)格搜索、隨機搜索等方法進行超參數(shù)調(diào)優(yōu)二、論述題(本大題共5個小題,共25分)1、(本題5分)分析在醫(yī)療數(shù)據(jù)的臨床決策支持系統(tǒng)中,如何運用數(shù)據(jù)分析提供實時的診斷建議和治療方案參考。2、(本題5分)在制造業(yè)的供應(yīng)鏈風險管理中,如何運用數(shù)據(jù)分析來預(yù)測供應(yīng)商的風險、應(yīng)對供應(yīng)中斷和優(yōu)化供應(yīng)鏈彈性?請詳細論述風險評估指標的選擇、數(shù)據(jù)驅(qū)動的決策和應(yīng)急計劃的制定。3、(本題5分)在房地產(chǎn)租賃市場,房屋租賃數(shù)據(jù)、租客需求數(shù)據(jù)等不斷豐富。分析如何借助數(shù)據(jù)分析手段,如租金價格預(yù)測、租客信用評估等,提升租賃業(yè)務(wù)管理水平,同時探討在數(shù)據(jù)更新及時性、租賃市場法規(guī)變化和租客流動頻繁方面可能面臨的問題及應(yīng)對方法。4、(本題5分)醫(yī)療行業(yè)的數(shù)據(jù)分析對于提高醫(yī)療質(zhì)量、優(yōu)化資源配置和疾病預(yù)防具有重要意義。請論述如何利用醫(yī)療數(shù)據(jù)進行疾病預(yù)測、治療效果評估和醫(yī)療資源需求分析,包括數(shù)據(jù)來源、分析方法和面臨的技術(shù)難題,以及如何在保護患者隱私的前提下實現(xiàn)數(shù)據(jù)共享和合作。5、(本題5分)在房地產(chǎn)行業(yè),數(shù)據(jù)分析可用于市場趨勢預(yù)測、房價評估、客戶需求分析等。論述如何運用數(shù)據(jù)分析輔助房地產(chǎn)投資決策、項目開發(fā)規(guī)劃、銷售策略制定,并分析政策對房地產(chǎn)數(shù)據(jù)分析的影響。三、簡答題(本大題共5個小題,共25分)1、(本題5分)描述在數(shù)據(jù)分析中,如何進行數(shù)據(jù)的特征工程以提高模型的可解釋性,包括特征選擇和構(gòu)建的策略。2、(本題5分)簡述數(shù)據(jù)分析師如何進行問題定義和需求分析,包括與業(yè)務(wù)部門溝通、理解業(yè)務(wù)背景和目標等,并舉例說明。3、(本題5分)在進行數(shù)據(jù)預(yù)處理時,如何處理重復(fù)數(shù)據(jù)?解釋重復(fù)數(shù)據(jù)的產(chǎn)生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)防擁擠踩踏班會課件
- 攜手抗疫守護健康
- 我為健康而來主題演講大綱
- 健康飲食產(chǎn)業(yè)園項目風險管理方案
- 電網(wǎng)側(cè)獨立儲能示范項目資金申請報告(參考)
- 2025年高效的鍋爐鼓、引風機項目發(fā)展計劃
- 系統(tǒng)解剖學(xué)試題(附參考答案)
- 2025年環(huán)保節(jié)能型冷卻塔項目合作計劃書
- 物業(yè)管理企業(yè)財務(wù)管理規(guī)定
- 武漢體育學(xué)院附屬體育運動學(xué)校招聘真題
- 把信送給加西亞:一種由主動性通往卓越的成功模式-(美)阿爾伯特·哈伯德著;路軍譯
- 湖北襄陽東津新區(qū)(經(jīng)開區(qū))社會化聘用中小學(xué)及幼兒園教師筆試真題及答案2022
- 電焊工安全操作教育培訓(xùn)內(nèi)容培訓(xùn)必備
- 年產(chǎn)40萬噸熱鍍鋅板帶項目節(jié)能評估報告
- 四年級奧數(shù)全套奧數(shù)講義
- DB11T 593-2016高速公路清掃保潔質(zhì)量與作業(yè)要求
- GB/Z 40637-2021古籍印刷通用字規(guī)范字形表
- GB/T 19250-2013聚氨酯防水涂料
- 2023年涉縣水庫投資管理運營有限公司招聘筆試題庫及答案解析
- 小企業(yè)會計準則報表格式完整
- 醫(yī)院就診告知書
評論
0/150
提交評論